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ABSTRACT

Resource allocation in control and communication systems constitutes the

distribution of (finite) system resources in a way that achieves maximum system

functionality and or cost effectivesness. Specific resource allocation problems in

subband coding, Discrete Multi-tone modulation based systems and autonomous

multi-agent control are addressed in this thesis.

In subband coding, the number of bits used (out of a target bit budget) to

code a subband signal are allocated in a way that minimizes the coding distortion.

In Discrete Multi-tone modulation based systems, high bit rate streams are split

into several parallel lower rate streams. These individual data streams are trans-

mitted over different subchannels. Given a target bit rate, the goal of resource

allocation is to distribute the bits among the different subchannels such that the

total transmitted power is minimized. The last problem is achieving stable control

of a fleet of autonomous agents by utilizing the available communication resources

(such as transmitted Power and bandwidth) as effectively as possible.

We present an efficient bit loading algorithm that applies to both subband

coding and single-user multicarrier communication system. The goal is to effect

an optimal distribution of B bits among N subchannels (subbands) to achieve a

minimum transmitted power (distortion error variance) for multicarrier (subband

coding) systems. All the algorithms in literature, except a few (which provides

a suboptimal solution), have run times that increase with B. By contrast, we

provide an algorithm that solves the aforementioned problems exactly and with a

complexity (given by O(N log(N)),) which is dependent only on N .

Bit loading in multi-user multicarrier systems not only involves the distribu-

tion of bit rates across the subchannels but also the assignment of these subchannels

to different users. The motivation for studying suboptimal bit allocation is under-
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scored by implicit and explicit claims made in some of the papers which present

suboptimal bit loading algorithms, without a formal proof, that the underlying

problem is NP-hard. Consequently, for no other reason than the sake of complete-

ness, we present a proof for NP-hardness of the multiuser multicarrier bit loading

problem, thereby formally justifying the search for suboptimal solutions.

There has been a growing interest in the area of cooperative control of net-

works of mobile autonomous agents. Applications for such a set up include or-

ganization of large sensor networks, air traffic control, achieving and maintaining

formations of unmanned vehicles operating underwater, air traffic control etc. As

in Abel et al, our goal is to devise control laws that, require minimal information

exchange between the agents and minimal knowledge on the part of each agent

of the overall formation objective, are fault tolerant, scalable, and easily reconfig-

urable in the face of the loss or arrival of an agent, and the loss of a communication

link.

A major drawback of the control law proposed in Abel et al is that it assumes

all agents can exchange information at will. This is fine if agents acquire each others

state information through straightforward sensing. If however, state information is

exchanged through broadcast communication, this assumption is highly unrealistic.

By modifying the control law presented in Abel et al, we devise a scheme that allows

for a sharing of the resource, which is the communication channel, but also achieves

the desired formation stably. Accordingly we modify the control law presented in

[30] to be compatible with networks constrained by MAC protocols.
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CHAPTER 1

INTRODUCTION

Resource allocation involves managing the finite system resources among the

entities with a goal to achieve optimal system functionality and/or cost effective-

ness. These resources include bandwidth, power, buffer size and computational

complexity which is indirectly related to power. The primary goal of this thesis is

to address certain resource allocation problems in certain signal processing, com-

munication and control applications. The three specific problems we consider are

subband coding (SBC), Discrete Multi-Tone (DMT) or multicarrier transmission

and autonomous multi-agent control respectively. The common thread in all three

problems is the regulation of access to pertinent communication resources, very

directly for multi-agent control and the DMT problem, and more tangentially for

SBC.

Let us begin with multi-agent control. The specific problem is how to induce

a group of agents to organize themselves in a formation, specified by a limited num-

ber of relative position information between agents, without excessive reliance on a

centralized authority, but rather through limited inter-agent communication. This

line of research is relatively new (see [1] and [30] and the references therein). What

sets it apart from traditional feedback control problems is that the architecture

underlying the information exchange, plays a critical role in control performance.

Such communication architectures are only recently being analyzed. In effecting

the required information exchange, the agents must intelligently share the commu-

nication medium. Specifically, we assume that agents broadcast the information

they need neighbors to know. This in turn imposes certain constraints: No two

agents can simultaneously broadcast to the same agent, or for that matter only

one agent in whose broadcast range an intended receiver resides, can transmit at a
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given time. Otherwise the broadcasts interfere and smear each other out. This is a

classic Medium Access Control (MAC) issue, hitherto neglected in the multiagent

control literature. Our goal here is to study how to preserve stability despite such

MAC constraints.

Medium Access Control has long been considered in all communications sys-

tems. In DMT this takes a special form. Specifically, as will be explained at greater

length in the sequel, DMT transmits a message using multiple carriers. Different

carriers are assigned different number of bits per/symbol. Carriers that experience

more adverse channel conditions are assigned fewer bits compared to those that

see better subchannels. Medium Access Control is partially achieved by bit load-

ing, that is defined as the process of allocating the number of bits/symbol to each

carrier.

Subband coding on the other hand is a source coding problem. As explained

below, it quantizes a signal by first dividing it into multiple subbands, and by

then effecting bit loading, by quantizing each subband with varying number of

bits/sample, according to the energy in each subband. Subbands with higher energy

receive higher number of bits. One can view bit loading in DMT as a channel coding

problem. Just as most channel coders have a dual relationship with certain source

coders, the bit loading in SBC can be viewed as a dual to that in DMT. As explained

in Section 1.1.1, SBC can be viewed as yet another manifestation of MAC, albeit

in an indirect sense. We are concerned with effecting optimal bit loading in SBC to

minimize the total distortion, and that in DMT, to achieve a given Symbol Error

Rate, with the smallest transmission power. While bit loading algorithms abound

in the literature, the computational complexity of each such grows with the number

of bits to be assigned. Our major, and by now patented, contribution is to provide

a bit loading algorithm whose complexity does not grow with the number of bits to

be allocated.
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The thread that ties the three seemingly disparate problems is MAC. In the

control problem our emphasis is on stability that is the sine qua non of all control

laws. In SBC and DMT, our goal is to preserve computational resources that in

turn preserve battery power.

1.1 Background and Motivation

The following sections 1.1.1 and 1.1.2 respectively provide some background

material on SBC and DMT based systems and fault tolerant multi-agent control.

1.1.1 SBC and DMT based systems

Human ears are generally sensitive over a wide range of frequencies. However,

when a lot of audio signal’s energy is present over a certain frequency range, the

ear fails to pick up lower energy frequencies nearby. Audio signals also typically

have a lot of their energy concentrated in the low frequencies. SBC exploits these

properties by first dividing the spectrum of the audio signal into a number of

subbands and then quantizing these subband signals at a resolution determined

by their energy. High energy subbands are encoded using more quantization levels

than those with low energy. The problem of bit loading in SBC constitutes the

distribution of the number of quantization levels allocated to each subband in a

way that keeps the cumulative quantization error to a minimum. SBC is a powerful

method of encoding audio signals efficiently. SBC resides at the heart of the popular

MP3 format (also known as MPEG 1 audio layer III).

✲x(n) y(n)
Q✲

Figure 1.1: A b-bit quantizer

To make things more concrete, consider Figure 1.1, that calls for the discrete
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time signal x[n] to be quantized by the B-bit quantizer Q. Suppose, the spectrum

of x(n) is as in Figure 1.2, the notable feature being that x(n) has dominant low

frequency components. Subband coding seeks to exploit the fact that the signal to

be quantized is dominantly low pass. It thus employs a 2-channel subband coder

depicted in Figure 1.3.

✻

✲

◗
◗
◗

◗
◗
◗
◗

◗
◗
◗

◗
◗◗

0 π/2 π ω

X(ejω)

Figure 1.2: Spectrum of the signal to be quantized

In Figure 1.3, the blocks that follow the filters Hi(z) are 2-fold decimators

that lower the effective sampling rate by a factor of two by discarding every even

indexed sample of its input. In particular should the input to such a device be

v(n), then its output is v(2n). The blocks following the blocks labeled Qi are 2-fold

interpolators. These raise the sampling rate by a factor of two by interlacing a

zero sample between every consecutive sample of the signals at their input. Thus,

should the input to such a device be v(n), then the output at the n-th index is

given by:







v
(

n
2

)

; n mod 2 = 0

0; else

Observe H0(z), with frequency response depicted as in Figure 1.4 is an ideal

low pass filter, just as H1(z), with frequency response depicted as in Figure 1.4

is an ideal high pass filter. Between the two they cover the whole base positive
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✲

✲

✲

✲

✲

✲

✲

✲

✲

✲ ✲

x(n)
H0(z)

H1(z)

↓ 2

↓ 2

Q0

Q1

↑ 2

↑ 2

G0(z)

G1(z)
y(n)

x0(n)

x1(n)

Figure 1.3: A 2-channel subband coder

✲

1

π/2 ω

H0(e
jω)

✻

Figure 1.4: Frequency response of H0(z)

✲

1

π/2 ω

H1(e
jω)

π

✻

Figure 1.5: Frequency response of H1(z)

frequency range [0, π]. So how does this 2-channel SBC work? It effectively splits

the signal into its low and high frequency components, the former at the output

of H0(z) and the latter at the output of H1(z). Given that these filtered signals

have half the bandwidth of x(n), no information is lost through there being down

sampled by a factor of two. Now suppose the Qi are Bi-bit quantizers. Then the
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effective coding rate/sample can be kept at the desired value b, should one enforce

the equality:

B =
B0 + B1

2
. (1.1.1)

On the other hand by choosing:

B0 > B1

one allocates more bits to the higher energy component of x(n) than to the lower

energy component. One can chose the filters Gi(z) so that the overall output would

equal x(n), in the absence of the quantizers Qi. The net effect is that the output

of the SBC has a lower distortion than the output of the arrangement in Figure

1.1, while maintaining the effective desired coding rate of Bb. The bit allocation

problem, in the example of such a 2-channel subband coder, is to choose theBi, so as

to minimize this overall distortion subject to (1.1.1). This explains the underlying

rudiments of subband coding.

Turn now to DMT. Modern day communication systems must be capable of

offering reliable high-speed data transmissions. They are also required to support

a plethora of services with vastly different types of data (such as voice, Internet,

video, High-Definition voice and video content etc.). Discrete Multi-Tone (DMT)

modulation schemes, that generalize their most popular variant, Orthogonal Fre-

quency Division Multiplexed (OFDM) systems, support high capacity communica-

tion systems. They are particularly effective over frequency selective communica-

tion channels.

Single-Tone modulation systems are more prone to intersymbol interference

(ISI). DMTmodulation schemes reduce ISI by making the symbol time large enough

so that the channel-delay spreads are only a fraction of the symbol duration. A

given high bit rate data stream is divided into several parallel lower bit rate streams.
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These individual data streams (with potentially different rates) are then transmit-

ted on different subchannels, with different carrier frequencies, and consequently

experiencing different channel conditions. The number of bits transmitted over a

subchannel is dependent on the channel conditions. The more severe the attenua-

tion experienced in a subchannel the fewer the bits allocated to it. The distribution

of the bit rates over the subchannels is to be carried out in a way that minimizes

the total transmitted power while simultaneously meeting the symbol error rate

(SER) requirements.

Discrete Multitone modulation is a current standard in several wireline appli-

cations such as ADSL, VDSL etc, and in the form of Orthogonal Frequency Division

Multiplexing (OFDM) is a fixture in wireless standards such as Long Term Evo-

lution (LTE) rel.8 and later, IEEE 802.11x, Mobile Broadband Wireless Access

(MBWA) IEEE 802.20 and IEEE 802.16e etc.

The bit loading objective in DMT is as follows. Suppose with N -tones (sub-

channels) the data rate in each subchannel is reduced by a factor of N relative

to the desired data rate. Suppose the desired bit rate is B. Then one must al-

locate Bi-bits/symbol to the i-th carrier/subchannel/tone to minimize the total

transmitted power, to achieve a specified SER subject to bit rate constraint:

B =
N
∑

i=1

Bi

Though the bit allocation problems in SBC and DMT have different an-

tecedents, and though, as shown in Chapter 2, the functional form of the underlying

optimization problems are, on the face of it different, as also shown in Chapter 2,

they can be captured within a unifying framework. In particular, the specialization

of a common general algorithm solves both. There are several implementation of

this general algorithm in the literature. These include those documented in [6], [7],

[9], [11], [13]. The two most advanced and recent are [13] and [6]. The complexity of
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[13] grows as O(max {N log(N), B}). On the other hand [6] provides a suboptimal

solution with complexity O(max {N,B∗}), where B∗ is upper limit on the number

of bits allocated to a subchannel.

The assumption of a small B or B∗ could prove to be sticky in subband

coding, and even in communications settings when certain subchannels experience

deep fades (severe attenuation). All the algorithms in literature, except [6] (which

provides a suboptimal solution), have run times that increase with B. By contrast,

we provide an algorithm, [18, 19], that solves the aforementioned problems exactly

and with a complexity (given by O(N log(N)),) which is dependent only on N .

In a sense the SBC setup can also be viewed as a MAC problem. In particular

in Figure 1.3 the arrangement to the left of the quantizers Qi can be viewed as

a transmitter system, and that to the right, as receiver system. Indeed, [21],

even DMT has a filter bank interpretation that is a dual to that of Figure 1.3.

Specifically, as shown in [21] a DMT system is equivalent to a filter bank in which

the arrangement to the right of the quantizers is exchanged with that to the left.

A typical multiuser system has different types of services being offered, for

example data, voice, video etc., to different users with varied quality of service

requirements. Bit loading in multi-user multicarrier systems not only involves the

distribution of bit rates across the subchannels but also the assignment of these

subchannels to different users. Algorithms that achieve suboptimal bit loading

exist in literature. These include [20], [22], [23], and [24]. The motivation for

studying suboptimal bit allocation is underscored by implicit and explicit claims

made in some of these papers, without a formal proof, that the underlying problem

is NP-hard, i.e. an algorithm whose run time grows polynomially with the number

of subchannels N is unlikely to be found.

We note that, in the theory of computational complexity, there exist a class

of problems categorized as NP-complete which are known not to have, as yet,
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algorithms that solve them with a run time that is a polynomial in input size.

Thus classifying a problem as NP-hard would mean that the problem is just as

“hard” to solve as an NP-complete problem and therefore cannot be solved in

polynomial time. Consequently, for no other reason than the sake of completeness,

we present a proof, [29], for NP-hardness of the multiuser multicarrier bit loading

problem, thereby formally justifying the search for suboptimal solutions.

1.1.2 Multi-Agent Control

Spurred by major advances in computing, wireless communications and net-

working, and an ever expanding application domain there has been a growing in-

terest in the cooperative control of networks of mobile autonomous agents. Ap-

plications for such a set up include organization of large sensor networks, air traf-

fic control, achieving and maintaining formations of unmanned vehicles operating

underwater, overland or in the air, organization of communication networks in re-

sponse to natural or man made disasters, air traffic control, satellite organization,

automated highway systems and mobile robots engaged in cooperative tasks.

We are concerned with agents modeled as double integrators in each cartesian

coordinate that must organize themselves into formations prescribed by the relative

positions between the agents. As in Abel et al [30] our goal is to devise control

laws that, require minimal information exchange between the agents and minimal

knowledge on the part of each agent of the overall formation objective, are fault

tolerant, scalable, and easily reconfigurable in the face of the loss or arrival of an

agent, and the loss of a communication link.

A major drawback of [30] is that it assumes all agents can exchange infor-

mation at will. This is fine if agents acquire each others state information through

straightforward sensing. If however, state information is exchanged through broad-

cast communication, this assumption is highly unrealistic. In particular when
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agents broadcast their state information they must compete with each other for

access to the communication medium and are constrained by Media Access Control

(MAC) protocols. Effectively, the access to the communication medium becomes a

vital resource. It is therefore imperative to devise a scheme that allows for a sharing

of the resource, which is the communication channel, but also achieves the desired

formation stably. Accordingly we modify the control law in [30] to be compatible

with networks constrained by MAC protocols as in [31, 32].

1.2 Organization of the Thesis

In chapter 2 we discuss the problem of bit loading in SBC and single user

DMT systems. Sections 2.1 and 2.2 provide brief introductions to these systems.

We present bit loading in SBC and single user DMT systems as a convex optimiza-

tion problem in section 2.3. In section 2.4 we present an algorithm for optimal

integer bit loading and a runtime analysis of its complexity along. The section also

provides performance analysis of the proposed algorithm and a few of the advanced

algorithms that exist in literature.

Chapter 3 introduces the problem of optimal integer bit loading in multiuser

DMT systems. We identify the problem to be NP-hard and present a formal proof

to this effect as a motivation for seeking suboptimal solutions.

In Chapter 4 we introduce the problem of multi-agent control. A brief review

of the previous work in this area is presented before developing the math in section

4.2. In section 4.3 we present a review of [30] which deals with the problem of multi-

agent control in the absence of medium access control constraints. Modified control

law which respects the medium access constraints is then presented in section 4.4.

In chapter 5 we present the stability analysis for the control law from section

4.4. Section 5.2 presents a proof for the stability of the control law developed in

chapter 4. Chapter 6 summarizes the results of the proposed thesis.
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CHAPTER 2

RESOURCE ALLOCATION IN SUBBAND CODING AND SINGLE

USER DMT SYSTEMS

The problem of optimal integer bit loading in Subband Coding and DMT

systems is discussed in this chapter. We start by presenting an overview of SBC

and single user DMT systems in sections 2.1 and 2.2. Single user refers to the case

where all users supported by the DMT system have the same Quality of Service

(QoS) requirements, quantified by overall Symbol Error Rates (SER). The principal

contribution of this chapter, a bit loading algorithm for subband coding and single

user DMT systems, whose complexity does not grow with the number of bits to be

allocated, is presented in section 2.4.

2.1 Subband Coding Systems

Signals must often be communicated over a digital communication channel,

such as a modem, or stored in a digital memory, such as a DVD or flash drives.

It may however be the case that the original signal is not in an appropriate form

for the transmission or storage in the given channel. In this case the original

signal has to be transformed or coded into a form suitable for the channel. This

general operation is termed as signal coding. Signal coding is usually called signal

compression if the bit rate of the digital representation or the bandwidth of the

modulated version of the digital representation is less than the rate or bandwidth

of the input signal.

When the channels of a filter bank are used for coding, as in Figure 2.1, the

resulting scheme is known as subband coding. The symbol ↓ M denotes an M -fold

decimator that only retains those input samples that occur at time instants equal

to multiples of M . Thus in Figure 2.1, signals ui(k) and vi(k) are related as

vi(k) = ui(kM)
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The symbol ↑ M denotes an M -fold interpolator that inserts M − 1 zeros

between each sample of the input sequence. Hence yi(k) and wi(k) in Figure 2.1

are related by

yi(k) =







wi

(

k
M

)

if k is a multiple of M

0 otherwise.

In subband coding the bank of analysis filters, Hi(z), operate on the input

signal x(k) to generate a set of narrowband signals each representing a different

subband of the input spectrum. The narrow bandwidth of each subband signal

vi(k) allows sub-Nyquist sampling to be performed, reducing the bit rate needed

to code each subband. The analysis filters together with the decimators comprise

the analysis side of the subband coder. Quantizer Qi, a lossy compression system,

is employed to code each subband signal vi(k) producing signal wi(k). On the

synthesis side, interpolation is used followed by the synthesis filters Fi(z), resulting

in output x̂(k), to synthesize the reproduction of the original signal.

The performance of a subband coding system is generally assessed by some

measure of the fidelity of reproduction achieved, or equivalently by the degree

of distortion incurred, at a given bit rate. Often the rate is constrained by the

HM−1
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Figure 2.1: An M-channel filter bank as a subband coder.
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particular application and the design goal is to achieve some quality objective

while maintaining a tolerable complexity. A natural measure of performance in a

subband coding system is a quantitative measure of distortion, often measured in

the mean-square sense. Hence subband coding systems are considered optimal if

they minimize an average distortion measure subject to certain constraints on the

coder structure. Minimizing mean-squared distortion is equivalent to maximizing

the coding gain of the subband coding system, with coding gain defined as the ratio

of distortion incurred using a direct quantization scheme and the distortion using

a subband coder.

A major concern of the designer of a subband coding system is bit allocation,

the task of distributing a given quota of bits to the various quantizers of the signal

coding system to optimize the overall coder performance. Encoding in subbands

is advantageous since the number of quantizer levels and hence the reconstruction

error variance can be controlled in each band by appropriately allocating the bits

to different subbands.

The subband coder is as shown in Figure 2.1, with linear time-invariant filters

Hi(z), Fi(z). Quantizing a stationary random sequence with a quantizer can be

modeled as adding noise to a sequence. We assume different quantizer functions

for the quantizers Qi with the following model holding:

σ2
qi
= ci2

−2biσ2
vi

(2.1.1)

where σ2
qi
,σ2

vi
are respectively the quantizer noise and subband signal vari-

ances, constants ci depend on the input signal statistics, and bi are the number of

bits allocated to quantizer Qi.

The optimal subband coding problem is one of minimizing a weighted overall

distortion measure given by
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ǫ =
M−1
∑

i=0

wiσ
2
qi

(2.1.2)

The weights wi permit the distortion in different subbands to be assigned

varying levels of priority in the overall optimization. This optimization must be

performed under certain constraints. The first is the average bit rate constraint:

b =
1

M

M−1
∑

0

bi. (2.1.3)

The second is a Perfect Reconstruction condition. This takes various forms.

In all cases the minimal requirement is that absent quantizers, Qi the output of

the filter bank in Figure 2.1 equals its input. Such a filter bank is in general called

bi-orthogonal. An additional constraint often imposed, as in e.g. [2], is that of

orthogonality. This requires that the total energy of the subband signals vi equal

the input energy, and the total energy of the signals wi equals the output energy.

The variables of optimization are (i) bi, the bits allocated to the subbands and (ii)

the filters Fi(z) and Gi(z). The former of course is the bit loading problem. The

latter is the filter selection problem.

On the face of it, this is a highly involved optimization problem. However,

both for Orthonormal filter banks and for general biorthogonal filter banks, [2] and

[3], respectively, expose what we call here a separation principle: This principle,

states that under optimal bit loading, regardless of the total number bits, b, that

must be allocated, the optimal selection of the analysis and synthesis filters is

determined exclusively by the statistics of the input to the filter bank in Figure

2.1. The selection of these filters, and the knowledge of the input statistics, clearly

determine ci and σ2
vi
in (2.1.1).

Thus we focus on the bit loading problem, i.e. selecting bi to minimize:

ǫ =
M−1
∑

i=0

wici2
−2biσ2

vi
, wi, ci > 0, (2.1.4)
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subject to the average bit rate condition (2.1.3), with known wi, ci and σ2
vi
.

2.2 Discrete Multitone Transmission Systems

A central problem in communications concerns reliable and efficient transmis-

sion of information carrying signals over distortive channels. One popular approach

to achieving high speed data transmissions is Orthogonal Frequency Division Multi-

plexing (OFDM), which is a special case of Discrete Multitone (DMT) modulation.

To be specific, let us consider OFDM. The basic idea in OFDM is to subdi-

vide the data stream into M streams, each operating at 1/N -th the original rate

with integers N > M . In particular κ = N − M must exceed the delay spread

of the partially equalized channel, i.e. should the finite impulse response (FIR)

system representing the partially equalized channel, have degree m, then κ ≥ m.

In the sequel denote C(z) to be the transfer function of this FIR partially equalized

channel. Each of these data streams is assigned a separate carrier frequency. Suc-

cessive carrier frequencies are equispaced. These data streams are interlaced and

each block of M -symbols is augmented by a cyclic prefix redundancy of length κ.

In other words, the M -sized block is converted to an N -sized block by appending

the first κ samples to the end of the M -sized block. At the channel output the

redundancy is removed prior to demodulation, and subsequent to equalization.

At baseband the overall transmission system takes the form depicted in Fig-

ure 2.2. In particular, in OFDM, the xi represent the baseband data streams prior

to modulation. The input transform block G0 is the Inverse Discrete Fourier Trans-

form (IDFT) matrix. The block labeled P/S is a parallel to serial converter. The

block labeled as “insert redundancy” performs cyclic prefix insertion. The inverse

transform S0 is the Discrete Fourier Transform (DFT) matrix. The equalizer is

a designer choice and known both to the transmitter and receiver. Interference

models co-channel interference.
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Figure 2.2: A general DMT communications system.

An equivalent representation of this arrangement is depicted in Figure 2.3.

One can better appreciate the role of cyclic prefix by observing that in Figure 2.3

there holds:

s(n) =



















s0(n)

s1(n)

...

sN−1(n)



















=







































y0(n)

y1(n)

...

yM−1(n)

y0(n)

...

yκ−1(n)







































. (2.2.5)

In OFDM a perfect reconstruction condition obtains, i.e. absent noise and

interference the output stream equals the input stream, as long as κ exceeds the

equalized channel delay spread. Several recent papers have considered more gener-

alized settings, [14],[15],[16]. For example, the G0 and S0 need not be constrained as

IDFT and DFT matrices, respectively. Similarly, redundancy may be more general

than cyclic prefix. In fact for a suitably dimensioned matrix Ω, one may replace
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(2.2.5) by:

s(n) =



















s0(n)

s1(n)

...

sN−1(n)



















= Ω

























y0(n)

y1(n)

...

yM−1(n)

y0(n)

























.

As a case in point one can use the so called zero-padding redundancy, where the

last κ samples are replaced simply by zero samples, i.e. (2.2.5) becomes:

s(n) =



















s0(n)

s1(n)

...

sN−1(n)



















=







































y0(n)

y1(n)

...

yM−1(n)

0

...

0







































.

One constraint common to all of the relevant literature on the design of

optimum DMT, e.g. [4], [14], [15] and [16] is that κ be no smaller than the degree

of the equalized channel. This ensures that given an arbitrary equalized channel

transfer function of the requisite degree, there exist G0, S0 and S1, such that the

output in Figure 2.3 equals the input.

As has been shown in [4], [14], [15] and [16], the arrangement in Figure 2.3 has

an equivalent filter bank representation depicted in Figure 2.4. The transmitting

filters Fk(z), and receiving filters Hk(z) have a precise relationship with S0 and

G0, respectively. The nature of this relationship is not important for the purposes

of this thesis. What is important is the fact that as asserted in the Introduction,

there is a duality between the DMT structure and SBC. Specifically, if we ignore
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Figure 2.3: DMT communication system.

C(z) then the Filter Bank in Figure 2.4 is obtained by exchanging the synthesis

and analysis banks of the filter bank in SBC, albeit with N > M , rather than with

N = M .
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Figure 2.4: Filterbank model of an M -band DMT system.

Now turn to the underlying optimization problem, we wish to address. Each

sample of the data streams xi(n) has bi-bit symbols. Examples could be Pulse

Amplitude Modulation (PAM), Quadrature Amplitude Modulation (QAM) or for

that matter other well accepted encoders. A higher bi is more susceptible to error.

Given that each data stream, modulated as it is with a different carrier frequency,
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experiences a different set of channel conditions, at a macro level, the point of

bit-loading in DMT is to assign fewer bits/symbol to xi(n) if it sees a worse chan-

nel condition, while maintaining specified QoS requirements. The QoS it self is

quantified in this thesis by the following quantities:

(A) Bit rate.

(B) Symbol error rate (SER), η. Here SER is the probability of mis detecting a

symbol at the receiver.

In a single user case, each data stream has an SER no more than η, while

the effective bit rate over all the data streams matches the required bit rate. The

latter condition in particular can be quantified through the requirement that for a

given β there holds:

B =
M
∑

i=1

bi. (2.2.6)

The overall optimization problem in DMT is as follows. Given a linear time

invariant equalizer, wide sense stationary noise of known spectrum, with κ no

smaller than the degree of the equalized channel choose Si, G0, and bi, so that

the QoS requirements (A) and (B) are met, with minimum transmitted power,

subject to the perfect reconstruction requirement that in Figure 2.3, absent noise

and interference, the output data steam assuredly matches the input.

The key to the resolution of this problem is the relation between η in (B)

above and the number of bits per symbol and the signal to noise ratio (SNR). As

shown in [4, 14, 15, 16], all conventional B-bit symbol constellation schemes require

an output signal-to-noise ratio (SNR) of d2ζB, for modestly large B, in order to

achieve an SER of no more than η. Here d > 0 is determined by the SER, η and the

employed modulation scheme, and the constant ζ > 0 depends on the particular

modulation scheme used. For example, for a B-bit square QAM, the SER is given



www.manaraa.com

20

by, [14],

η = 4

(

1− 1√
2B

)

Q

(
√

3SNR

(2B − 1)

)

≈ 4Q

(
√

3SNR

2B

)

, (2.2.7)

whenever 2−B is much smaller than 1, and

Q(a) =

∫ ∞

a

1√
2π

e−x2/2dx.

Thus for large B, SNR= d2ζB with ζ = 1, d = 1
3
[Q−1(η

4
)]2 > 0. In the case of PAM,

ζ = 2, d = 1
3
[Q−1(η

2
)]2 > 0.

Let the input power in the j-th subchannel be σ2
xj
, and σ2

νj
be the output

noise variance in this subchannel. Since under perfect reconstruction, the input

power equals the output power in that subchannel, the relation between the input

signal power and the output noise power are related by

σ2
xj

= d2ζbjσ2
ej
, (2.2.8)

where the constant d is determined by the modulation scheme used.

Consequently, the total transmitted power needed to meet the QoS require-

ments is:

PB =
M
∑

i=1

d2ζbiσ2
ei
. (2.2.9)

The optimization problem then becomes selecting Si and G0, such that under

perfect reconstruction and (2.2.6), (2.2.9) is minimized. It has been shown in

[4, 14, 15, 16] that as in the SBC problem, a separation principle obtains: Under

the optimal selection of the bi, i.e. optimal bit loading, regardless of ζ and M , the

selection of Si andG0 is determined solely by the statistics of the overall transmitted

signal, noise and interference. Their selection determines ζ and ei. Consequently,

the problem at hand reduces to the following bit loading problem; namely that

given B, ζ and σ2
ei
, select bi to minimize (2.2.9) under (2.2.6).
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2.3 Bit Loading as a Convex Optimization Prob-

lem

We will now look at the problem of bit loading in subband coding systems as

well as single user DMT based systems. The importance of bit loading in these sys-

tems was detailed in the preceding two sections. Specifically, for an N -subchannel

(subband) system these problems reduce to a general problem of finding bk to

Minimize: P (b1, .., bN) =
N
∑

k=1

φk(bk) (2.3.10)

Subject to :
N
∑

k=1

bk = B , bk ∈ {0 , 1 , ...B}, (2.3.11)

where φk is a convex function, and B is a positive integer. In subband coding

φk(bk) = αk2
−2bk (2.3.12)

where αk is determined by the signal variance in the k-th subband, [4] and P (b1, .., bN )

is the average distortion variance, and bk is the bits assigned to the k-th subband

signal. Further αk increases with increasing signal variance. In multicarrier systems

φk(bk) = αk2
bk (2.3.13)

where αk reflect target performance, and channel and interference conditions expe-

rienced in the k-th subchannel, [14], [15] and P (b1, .., bN ) is the total transmitted

power. Higher values of αk reflects more adverse subchannel conditions and/or

stringent performance goals; bk is the the number of bits assigned to each symbol

in the cognizant subchannel.

It is recognized that for general convex functions φk(·), the above constrained

minimization grows in complexity with the size of B. Since B can be large, it is

important to formulate algorithms for which the complexity bound is independent

of B. The algorithm we provide here is for a general convex function (2.3.14) and



www.manaraa.com

22

hence could accommodate (2.3.12) (η=-2, a=2) and (2.3.13) (η=1, a=2).

φk(bk) = αka
ηbk (2.3.14)

We now present a general result from [17] that solves (2.3.10), (2.3.11) for

arbitrary convex φk(·). This result is specialized to the cases of (2.3.12) and (2.3.13)

in subsequent section. Denote for k = 1, ..., N, x = 1, ..., B,

δk(x) = φk(x)− φk(x− 1). (2.3.15)

The φk’s being convex, it follows that

δk(1) < δk(2) < ... < δk(B), ∀k. (2.3.16)

Let S denote the set of smallest B elements of

τ = {δk(x) : k = 1, ..., N, x = 1, ..., B}

The following lemma from [17], gives an optimum solution to (2.3.10), (2.3.11).

Lemma 2.3.1 The optimal solution b∗ = [b∗1, ..., b
∗
N ]

T to problem (2.3.10), (2.3.11),

is defined as follows

b∗k =























0 : δk(1) /∈ S

B : δk(B) ∈ S

y : δk(y) ∈ S, δk(y + 1) /∈ S

In essence this lemma provides a conceptual framework for solving (2.3.10),

(2.3.11). Specifically, construct S, and for each k, determine the largest integer

argument bk for which δk(bk) is in S. For general convex functions φk the complexity

of all known solutions grows with B. In the sequel we present an algorithm for the
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convex functions of the type (2.3.14) whose complexity does not depend on B.

2.4 Bit Loading Algorithm

In the case of (2.3.14), one finds that,

δk(x) = αkβ
(x−1)(β − 1).(where β = aη). (2.4.17)

The first step of the algorithm requires ordering the αi, and can be accom-

plished in O(N logN) steps. Henceforth assume without sacrificing generality that:

α1 ≤ α2 ≤ · · · ≤ αN if β > 1,

α1 ≥ α2 ≥ · · · ≥ αN if β < 1.
(2.4.18)

Define the sequence:

li = ⌈logβ(
αi

α1

)⌉, i = 1, 2, ..., N (2.4.19)

with lN+1 = ∞, where ⌈a⌉ is the smallest integer greater than or equal to a. The

significance of the integers li is explained by Lemma 2.4.1

Lemma 2.4.1 With li defined in (2.4.19),

δ1(li) < δi(1) ≤ δ1(li + 1).

Proof: From (2.4.19) we have li = ⌈logβ( αi

α1
)⌉. The definition of the ceiling

function gives us the following result,

li − 1 < logβ(
αi

α1

) ≤ li.

Now for β > 1 the result directly follows from the above equation. When β < 1 we

have the following

α1β
li−1 > αi ≥ α1β

li . (2.4.20)
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Multiplying throughout by (β-1) we obtain the result (observe that β − 1 < 0).

Then the proposed algorithm for solving (2.3.10), (2.3.11) under (2.3.14) is

given below. It assumes that the ordering implicit in (2.4.18), has already occurred,

and assigns bi bits to the i-th subchannel.

Proposed algorithm

Step-1: Find the smallest k such that

Rk =
k−1
∑

i=1

(lk − li) ≥ B (2.4.21)

Then

bi = 0 ∀i ∈ {k, k + 1, · · · , N}. (2.4.22)

Step-2: Find

∆ = B −Rk−1 (2.4.23)

r = ∆ mod (k − 1) (2.4.24)

q = ∆div(k − 1) (2.4.25)

Step-3: Find the r smallest elements of the set

{δ1(lk−1 − l1), δ2(lk−1 − l2), · · · , δk−1(0)}. (2.4.26)

In particular, with lji such that with lji ∈ {1, · · · , k − 1},

δji(lk−1 − lji) ≤ δji+1
(lk−1 − lji+1

), (2.4.27)

call

J = {j1, j2, ..., jr} . (2.4.28)

If r = 0, J is empty.
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Step-4: For all i ∈ {1, · · · , k − 1},

bji =







lk−1 − li + q + 1 if i ∈ J ,

lk−1 − li + q else.
(2.4.29)

2.4.1 Runtime Analysis

Observe that the complexity implicit in achieving (2.4.18) is O(N logN).

Determination of k so that (2.4.21) holds requires at most 2N operations, regardless

of B. Indeed one has, with

ρ1 = 0

ρn = ρn−1 + ln,

Rn = (n− 1)ln − ρn−1.

The only impact that B has in the complexity of determining k is that for suf-

ficiently small B, k < N and the number of computations is further reduced to

2(k−1). Determining the ranking manifest in (2.4.27) is determined only by r and

k, and is

O(r log(k − 1)) ≤ O((N − 1) log(N − 1)).

Determination of r requires 2 operations, independent of B. B does affect the

precise value of r, which however is no greater than N − 1. Thus the overall com-

plexity, is bounded by O(N log(N)), with B playing no role in the determination

of this bound. The only effect that B has on the overall complexity is to cause

fluctuations in the precise number of operations, within a range that is independent

of B. To recap, these fluctuations occur when:

• For small B, k < N , and finding k requires only 2(k − 1) operations.
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• As B changes r fluctuates between 0 and N−1, and the number of operations

required to determine the smallest r elements of the set in (2.4.26) changes.

Campello’s Algorithm:

To better illustrate the runtime efficiency of the proposed algorithm with regards

to the ones existing in literature, we analyze the algorithm (with the best runtime)

proposed in [6]. [6] proposes a solution to (2.3.10) and (2.3.11), where

φk(x) =
2

gn
(2x − 1). (2.4.30)

The discrete bitloading algorithm described in this reference is based on the fol-

lowing theorem.

Theorem 2.4.1 The discrete bit allocation, b(i) = [b1(i), b2(i), . . . , bN(i)], given

by

bn(i) = [⌊log2 gn⌋+ i]b̄0 , n = 1, 2, . . . , N. (2.4.31)

is efficient for all i ∈ Z, where

[x]ba =























b if b < x

x if a ≤ x ≤ b

a if x < a.

The idea is to find an i such that the resulting allocation is as tight as possible.

The algorithm could be summarized as follows,

Step 1: Determine

iB = max{i ∈ Z : |b(i)| ≤ B}.
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Step 2: Increment B′ = B−|b(iB)| subchannels with the smallest incremental

energy δn(iB + 1) in the set

I = {n ∈ {1, 2, . . . , N} : 0 ≤ ⌊log2 gn + iB⌋ ≤ b̄

We now analyze the steps to find iB as discussed in [6]. Assuming that gn’s

have a dynamic range, i.e., gn/gm < 2L for all n,m = 1, 2, . . . , N , and that they

are normalized to be in the set
[

1, 2L − 1
]

, define

Mk = {n ∈ {1, 2, . . . , N} : ⌊log2 gn⌋ = k}, k = 0, . . . , L− 1

and let Mk = |Mk|. Now b(i) can be calculated iteratively for i = −L + 2,−L +

3, . . . , b̄ according to the following equations. We consider the case b̄ ≤ L for our

analysis (the case b̄ > L is just as simple to analyze) .

Si =



































Si−1 +M1−i if 1− L ≤ i ≤ b̄+ 1− L

Si−1 +M1−i −Mb̄+2−i if b̄+ 1− L < i ≤ 1

Si−1 −Mb̄−i−1 if 1 < i ≤ b̄

0 if b̄ < i.

|b(i)| = |b(i− 1)|+ Si

where S1−L = |b(1− L)| = 0. For 1− L ≤ i ≤ b̄+ 1− L we have,

|b(2− L)| = ML−1,

|b(3− L)| = 2.ML−1 +ML−2,

|b(4− L)| = 3.ML−1 + 2.ML−2 +ML−3,

...
∣

∣b(b̄+ 1− L)
∣

∣ = b̄.ML−1 + (b̄− 1).ML−2 + . . .+ML−b̄,

|b(i)|’s for i > b̄+1−L take a similar pattern with the added constraint that

none of the channels are allocated more than b̄ bits. This is guaranteed due to the
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correction incorporated into computing Si’s for i > b̄ + 1 − L. The essence of the

above illustration is that determining iB for this scenario is equivalent to sorting

αi’s in ascending or descending order (depending on the application) and finding

the largest k such that Rk ≤ B in the proposed algorithm (Step-1). The runtime

of this step as discussed in [6] is O(L) (O(max{N,L}) to be precise), where L is

the dynamic range of gn’s. This is not a desirable property since the presence of

deep fades in the channel could result in a fairly large L.

2.4.2 Proof for Correctness of the Algorithm

We now show that the algorithm in section 2.4 does indeed solve (2.3.10),

(2.3.11), under (2.3.13). In view of Lemma 2.3.1 it suffices to show that the set

S∗ = {δ1(1), · · · , δ1(b1), δ2(1), · · · , δ2(b2), . . . , δk−1(bk−1)}, (2.4.32)

is such that S∗ = S, defined in section 2.3. This in turn requires the demonstration

of the following facts.

(A) |S∗| = |S| = B, where |·| represents the cardinality of its argument.

(B) For all i, j ∈ {1, 2, · · · , N}, δi(bi + 1) ≥ δj(bj) .

The first theorem proves (A).

Theorem 2.4.2 With bi defined in (2.4.21-2.4.29), |S∗| = B.
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Proof: Since bi = 0 for all i ∈ {k, k+1, · · · , N}, we need to show that
∑k−1

i=1 bi =

B. From (2.4.21-2.4.25) we have that

k−1
∑

i=1

bi =
∑

i∈J

bi +
∑

i∈{{1,··· ,k−1}−J}

bi

= r(q + 1) + (k − 1− r)q +
k−1
∑

i=1

(lk−1 − li)

= ∆ +Rk−1

= B.

To prove (B) we need an additional Lemma.

Lemma 2.4.2 With li, k and q as in (2.4.19-2.4.25),

q







≤ lk − lk−1 if r = 0

< lk − lk−1 if r 6= 0

Proof: From (2.4.21-2.4.25)

(k − 1)q + r ≤ Rk −Rk−1

=
k
∑

i=1

(lk − li)−
k−1
∑

i=1

(lk−1 − li)

= (k − 1)(lk − lk−1).

Hence the result.

We now prove (B) for the case where r = 0.

Theorem 2.4.3 Consider (2.4.19-2.4.29). Suppose r = 0. Then (B) above holds.

Proof:

Consider two cases that exhaust all possibilities.
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Case β > 1: For all i ∈ {2, · · · , k − 1}, from Lemma 2.4.1, we have:

δi(bi) = αiβ
lk−1−li+q−1(β − 1) ≤ α1β

lk−1+q−1(β − 1) = δ1(b1), (2.4.33)

as l1 = 0. Thus δ1(b1) is the largest member of S∗ in (2.4.32). From Lemma 2.4.1,

for all i ∈ {1, · · · , k − 1},

δi(bi + 1) = αiβ
lk−1−li+q(β − 1) > α1β

lk−1+q−1(β − 1) = δ1(b1). (2.4.34)

Further, as (2.4.22) holds, we have from Lemmas 2.4.1 and 2.4.2 that for all i ∈

{k, k + 1, · · · , N},

δ1(b1) = α1β
lk−1+q−1(β − 1) ≤ α1β

lk−1(β − 1) < αk = δk(1). (2.4.35)

In view of (2.4.33), (2.4.34) and (2.4.35), prove the result.

Case β < 1: From Lemma 2.4.1 and (2.4.20) (multiplying (2.4.20) throughout by

(β − 1)) we have:

δi(bi) = αiβ
lk−1−li+q−1(β − 1) ≤ α1β

lk−1+q−1(β − 1) = δ1(b1), (2.4.36)

This shows that δ1(b1) is the largest member of S∗ in (2.4.32). From Lemma 2.4.1

and (2.4.20), for all i ∈ {1, · · · , k − 1},

δi(bi + 1) = αiβ
lk−1−li+q(β − 1) > α1β

lk−1+q−1(β − 1) = δ1(b1). (2.4.37)

Following the same argument as before from (2.4.22), Lemmas 2.4.1 and 2.4.2 that

for all i ∈ {k, k + 1, · · · , N},

δ1(b1) = α1β
lk−1+q−1(β − 1) ≤ α1β

lk−1(β − 1) < αk = δk(1). (2.4.38)

Equations (2.4.36), (2.4.37) and (2.4.38) prove the result.

Finally we prove (B) for the case where r 6= 0.

Theorem 2.4.4 Consider (2.4.19-2.4.29). Suppose r 6= 0. Then (B) above holds.
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Proof: With the indices ji defined in (2.4.27), we first show that

δjr ≥ δi(bi) ∀i ∈ {1, · · · , k − 1}. (2.4.39)

In view of (2.4.27) this is clearly true for i ∈ J . Now consider p ∈ {{1, · · · , k −

1} − J}.

Consider again two cases that exhaust all possibilities.

Case β > 1: As a result of (2.4.29) and Lemma 2.4.1

δp(bp) = αpβ
lk−1−lp+q−1(β − 1)

≤ α1β
lk−1+q−1(β − 1)

< αj1β
lk−1−lj1+q(β − 1) = δj1(bj1)

≤ δjr(bjr) ,

where the last inequality follows from (2.4.27).

Case β < 1: As a result of (2.4.29), Lemma 2.4.1 and (2.4.20) (multiplying (2.4.20)

throughout by (β − 1))

δp(bp) = αpβ
lk−1−lp+q−1(β − 1)

≤ α1β
lk−1+q−1(β − 1)

< αj1β
lk−1−lj1+q(β − 1) = δj1(bj1)

≤ δjr(bjr) ,

where the last inequality once again follows from (2.4.27). For all i ∈ {{1, · · · , k−

1} − J}, (2.4.27, 2.4.28) demonstrate that

δi(bi + 1) ≥ δjr(bjr). (2.4.40)

Further, from Lemma 2.4.1 for all i ∈ J ,

δi(bi + 1) = αiβ
lk−1−li+q+1(β − 1)

> α1β
lk−1+q(β − 1)

≥ δjr(bjr)(β − 1).
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Then the result is proved by observing from Lemma 2.4.2 that

δjr(bjr) = αjrβ
lk−1−ljr+q(β − 1)

≤ αjrβ
lk−1−ljr−1(β − 1)

≤ α1β
lk−1

< αk = δk(1).

2.5 Simulations

A comparison of the performance of the algorithms of [13] and [6] and the

proposed algorithm with respect to the number of computations required is shown

in the figures 2.5 and 2.6, for the cases where N = 32 and N = 64, respectively. In

implementing [6], which is a suboptimal algorithm, the maximum number of bits,

B∗ that any channel can be assigned is kept at B.

Number of computations needed for each algorithm to converge to the optimal

solution was calculated by assuming that addition, subtraction, div, mod, multipli-

cation or division of two numbers would need one computation as would the logical

comparisons between two decimal numbers. The results show that the algorithm

described in [6] is linear with respect to B while the algorithm in [13] needs large

number of computations to converge as B grows. The number of computations

needed for the proposed algorithm is independent of the change in B the minor

variations seen are attributed to the facts that for small B, k in (2.4.21) is small,

reducing the number of computations slightly, and cyclic fluctuations induced by

the variation in r (see (2.4.24)) between 0 and N −1. The sorting algorithm whose

convergence depends on the input vector) and the difference in the run-times be-

comes very significant for large B. Further the proposed algorithm out performs

that of [6], even when B is small, and even in [6] B = B∗ will be chosen. This is
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Figure 2.5: Runtime comparisons of the three algorithms for N=32
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Figure 2.6: Runtime comparisons of the three algorithms for N=64
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largely because of the fact that the run time in [6] grows with the dynamic range

of αk.

2.6 Conclusion

In this chapter we have motivated the role of bit loading in subband coding

and single user multicarrier communication. The main contribution of this chapter

is to formulate a new bit loading algorithm that unlike all others, has complexity

that does not grow with the number of bits to be allocated. This has significant

practical implications for high fidelity coding and high data rate broadband com-

munications. The next chapter will view the bit loading problem for multiuser

DMT, where the same DMT system supports multiple users with differing QoS

requirements, quantified by the SERs they require and bit rates they expect. That

result however, will be negative, in that we will show the problem to NP-hard.
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CHAPTER 3

BIT LOADING IN MULTIUSER MULTICARRIER SYSTEMS

In this chapter, we examine the problem of bit allocation in multiuser mul-

ticarrier systems. In particular we examine bit loading within the context of mul-

tiuser communications, i.e. when multiple services with different data rate and

QoS requirements must share the same multicarrier communications system. The

principal contribution is to show that the underlying optimization problem is NP-

hard. Section 3.1 describes the general setup, and abstracts a bit loading problem

from it. Section 3.2 recounts pertinent facts about Np-completeness and relates it

to the problem at hand. Section 3.3 proves NP-hardness.

3.1 The setup

Refer to the general DMT setup of Figure 3.1, note the change of notation

from the previous chapter. As in [16] we now consider the problem where the DMT

system depicted in Figure 3.1 supports multiple users. To be specific, we assume

there are K users and N subchannels. Each user has its own quality of service

(QoS) requirement quantified by its bit rate and symbol error rate (SER). More

precisely, we assume that the k-th user requires a bit rate of βk and must not sustain

an SER that exceeds ηk. Its overall communication is distributed over several

subchannels, as many in fact as needed. The overall optimization goal is to select

the input and output block transforms G0 and S0, the linear redundancy matrix

S1, the number of bits/symbol assigned to each subchannel, and the subchannel

assignment to each service flow, in order to achieve the QoS specifications under a

perfect reconstruction condition with minimum transmitted power.

Observe the expanded goal of not just to distributing the bit rates across

the carriers, but also to assign specific carriers to different services. For an N -

subchannel, K-user system this problem reduces to general problem of constrained
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ŷN−1(n)
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Figure 3.1: Multiuser DMT communication system.

optimization shown below,

min
bn,k,ρn,k

K
∑

k=1

N
∑

n=1

φnk(bn,k)ρn,k (3.1.1)

Subject to :























































K
∑

k=1

ρn,k = 1, forn = 1, . . . , N

N
∑

k=1

bn,k = βk, k = 1, . . . , K.

ρn,k =







1 if bn,k 6= 0

0 if bn,k = 0

ẑi(n) = z0(n); ∀n ∈ Z, i ∈ {0, · · · , N − 1} if no noise and interference.

(3.1.2)

Here

φnk(bn.k) = αkn2
bn,k , (3.1.3)

with αkn determined by the SER requirement and the signal variance in the perti-

nent channel. Further, βk is the data rate requirement for user-k; ρn,k takes value

1 if the n-th subchannel is allocated to user k and 0 otherwise. Since the sum of



www.manaraa.com

38

all ρn,k is 1 for any n, it is assured that none of the subchannels are allocated to

more than one user. A key difference from single user case is the multiple bit rate

constraints.

The optimization variables are bn,k, ρn,k, G0 and Si. The selection of ρn,k

is tantamount to the added requirement of subchannel selection, absent in the

single user case. Another difference of course is the fact that the SER requirement

varies across users. Nonetheless, [16] shows that under optimal bit loading and

subchannel selection the matrices G0, and Si are determined entirely by the signal,

noise and interference statistics. Thus, effectively (3.1.2) can be replaced by the

simpler problem below.

Subject to :











































K
∑

k=1

ρn,k = 1, forn = 1, . . . , N

N
∑

k=1

bn,k = βk, k = 1, . . . , K.

ρn,k =







1 if bn,k 6= 0

0 if bn,k = 0

(3.1.4)

This problem is yet to be solved, and its study is the subject of this chapter.

Approximation algorithms achieving a suboptimal bit allocation exist in the litera-

ture. These include, [20], [22], [23], [24] and [25] the latter considering a variation.

Several papers e.g. [22] have stated without proof or reference to the fact that

this problem is NP-hard as a motivation for considering suboptimal solutions. The

paper [20], does cite a result from [28] to justify the NP-hardness of this prob-

lem. However, [28] demonstrates the NP-hardness of the following problem. Given

arbitrary convex fi, positive real ai, find non-negative integers xi to:

Minimize : Z(X) =
n
∑

i=1

fi(
m
∑

j=1

aijxij), (3.1.5)
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Subject to :
n
∑

i=1

xij = Nj, j = 1, 2, . . . ,m. (3.1.6)

This problem is far more general than the problem studied here. Thus its NP-

hardness does not prove the NP-hardness of the problem considered. Consequently,

if for no other reason than the sake of completeness, we present a proof for NP-

hardness of the integer bit loading problem for a Multiuser multicarrier system.

A brief introduction to the theory of NP-completeness is first presented in

section 3.2. Section 3.3 presents a formal proof classifying the problem as being

NP-hard.

3.2 Theory of NP-Completeness

A problem A is said to be NP-hard if a problem B known to be NP-complete

can be transformed to a problem instance of A (in polynomial time) in the sense

that any problem instance of B has a solution if and only if the transformed in-

stance A has a solution. (Thus A is not easier than B since any instance of B can

be solved by solving the transformed instance of A). Note that the whole set of

problem instances of B may be transformed to only a subset of problem instances

of A. The following problem Q is a special case of the constrained optimization

problem defined by (3.1.1) and (3.1.4) specialized for the two user case.

Problem Q: Given positive integers β1 and β2, positive numbers αk, φk(xk) =

αk2
xk , find nonnegative integers xk and δk, ∀k such that (3.2.7) is minimized sub-

ject to (3.2.8).

Minimize : P (x1, .., xN ) =
N
∑

k=1

φk(xk), (3.2.7)
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Constraint :



























N
∑

k=1

δkxk = β1,where δk = {0, 1},
N
∑

k=1

xk = β1 + β2,

xk ∈ {0, 1, ...,max{β1, β2}}.

(3.2.8)

To see why this problem is a special case of our original problem in the two user

case, observe in the original problem one works with a cost function each of whose

summands depends not just on the subchannel but the user. Indeed see that in

(3.1.3) the coefficient αnk has two subscripts. It changes from user to user because

the different users may have different SER requirements. As stated, in Problem

Q the functional from of the summands only depend on the subchannels, and not

on the user. Thus, in effect Problem Q assumes that all users have the same SER

requirement. Of course if this problem is NP-Hard then so must be the original

problem.

We now present a problem that qualifies as a simpler instance of Q. Thus if

this new problem is NP-Hard so is Q.

Problem A: Given a set of positive real numbers {α1, . . . , αN}, P as defined

in Problem Q, and positive integers β1 and β2, Find xk,δk, ∀k, should they exist,

that satisfy the following set of equations.

P (x1, .., xN ) ≤ P (b1, .., bN ), for a certain b1, b2, . . . , bN (3.2.9)

Constraint :



























N
∑

k=1

δkxk = β1,where δk = {0, 1},
N
∑

k=1

xk = β1 + β2,

xk ∈ {0, 1, ...,max{β1, β2}}

(3.2.10)

The reason for this is stated as follows. Problem A is no harder than the corre-

sponding minimization problem Q because the minimum value P (x∗
1, x

∗
2, . . . , x

∗
N) of
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the minimization problem immediately shows whether P (x1, x2, . . . , xN) ≤ K for a

certain constant K is possible or not.

We now consider Subset Cover problem which is well known to be NP-

complete.

Problem B: Given a set of positive integers S = {b1, . . . , bN} and a positive

integer β1, decide whether there is a subset S1 ⊆ S such that elements of S1 sum

to β1.

Remark 3.2.1 This is equivalent to determining if δk ∀k exist such that

N
∑

k=1

δk.bk = β1, δk ∈ {0, 1}, ∀k.
N
∑

k=1

bk = β1 + β2

(3.2.11)

We will now show that given arbitrary positive integers S = {b1, . . . , bN} and

a positive integer β1, one can find a set of αi in polynomial time, such that the

solution to Problem B is obtained by solving Problem A with these αi. Indeed,

without loss of generality arrange:

bi ≥ bi+1∀i (3.2.12)

Choose αi such that,

2b1−bi−1 < αi < 2b1−bi , ∀i. (3.2.13)

The following additional restrictions are imposed on the choice of αi’s.

αi < αj, ∀i < j,

αi 6= 2Cαj, ∀i < j, for any integer C
(3.2.14)

Since αi’s are real numbers, there is always a choice of αi’s satisfying (3.2.13)

and (3.2.14). The above transformation could be completed in O(N) and the



www.manaraa.com

42

original sorting of bi requires O(N logN) time.

3.3 Proof for NP-Hardness of Bit loading in

Multiuser Multicarrier Systems

With the choice of αi’s as explained in Section 3.2 we now show that Q is

NP-hard.

We first state the following Theorem that will be proved through Lemmas

that follow it.

Theorem 3.3.1 Consider positive integers S = {b1, . . . , bN} and a positive inte-

ger β1, under (3.2.12). Suppose αi obey (3.2.13) and (3.2.14). Then the only

set {x1, x2, . . . , xN} for which P(x1, . . . , xN) ≤ P(b1, . . . , bN) under the constraint
N
∑

k=1

xk = β1 + β2, is x1 = b1, x2 = b2, . . ., xN = bN .

The next four lemmas, (3.3.1-3.3.4), help substantiate the above claim.

The first lemma proves that {x1, . . . , xN} = {b1, . . . , bN} is an optimal solu-

tion for the allocation of β1+β2 bits. It can be seen that the solution space of Prob-

lem A is a subset of the solution space of the constrained optimization problem pre-

sented in Theorem 3.3.1 above. Lemma 4 shows that {x1, . . . , xN} = {b1, . . . , bN}

is the only optimal solution under the constraint
N
∑

k=1

xk = β1 + β2. The Lemma

uses the algorithm discussed for single user bit allocation problem in the previous

chapter.

Minimize : P (x1, .., xN ) =
N
∑

k=1

φk(xk), (3.3.15)

Constraint :
N
∑

k=1

xk = B. (3.3.16)
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Lemma 3.3.1 Under the conditions of Theorem 3.3.1, the solution to the opti-

mization problem

Minimize : P (x1, .., xN ) =
N
∑

k=1

φk(xk),where φk(xk) = αk2
xk ,

Constraint :
N
∑

k=1

xk = β1 + β2,

(3.3.17)

is given by {x1, x2, . . . , xN} = {b1, b2, . . . , bN}.

Proof: Using the single user discrete bit-loading algorithm presented earlier in

the paper, [18], for the choice of αi’s described earlier we have,

li =

⌈

log2(
αi

α1

)

⌉

= b1 − bi.

We need to determine the smallest k for which the following holds.

Rk =
k−1
∑

i=1

(lk − li) ≥ β1 + β2 (3.3.18)

It can be seen that

RN =
N−1
∑

i=1

(lN − li)

=
N−1
∑

i=1

(bi − bN)

= β1 + β2 − (N × bN)

≤ β1 + β2.

Therefore the smallest k for which (3.3.18) holds is k = N + 1 (since lN+1 = ∞).

δ = β1 + β2 −RN = N × bN

r = δmod(N) = 0

q = δ div(N) = bN
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Since r = 0,

xi = lN − li + q

= bi − bN + bN

= bi, ∀i.

Having proved that claimed solution claimed in Theorem 3.3.1 is indeed op-

timal, we will next prove that it is the only optimal solution. To this end we first

establish an ordering of any solution to the optimization problem posed in Lemma

3.3.1.

Lemma 3.3.2 Under the conditions of Theorem 3.3.1, suppose {x1, x2, . . . , xN} is

an optimal solution to the constrained optimization problem in Lemma 3.3.1. Then,

xi ≥ xi+1, ∀i.

Proof: Supposing that ∃ i, j for which xi < xj for some i < j.

αi(2
xj − 2xi) < αj(2

xj − 2xi), because αj > αi, for j > i

αi.2
xj + αj.2

xi < αi.2
xi + αj .2

xj

This means that by swapping the number of bits assigned to channels i and j (while

retaining the allocation for the remaining channels) we could minimize the cost.

This is a contradiction since the initial assignment was know to be optimal.

Next we expose a property of the αi imposed by (3.2.13) and (3.2.14) under

(3.2.12).

Lemma 3.3.3 With the choice of αi’s explained by (3.2.13) and (3.2.14) the fol-
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lowing inequalities hold,

α1.2
b1 < αi.2

bi+1, ∀i

αi.2
bi < α1.2

b1 , ∀i
(3.3.19)

Proof: From equations (3.2.13) and (3.2.14) we have the following.

α1.2
b1−bi−1 < αi < α1.2

b1−bi

Using the first half of the above inequality we have,

α1.2
b1−bi−1 < αi

α1.2
b1−1 < αi.2

bi

α1.2
b1 < αi.2

bi+1

Now using the second half of the inequality,

αi < α1.2
b1−bi

αi.2
bi < α1.2

b1

Finally, we show that the solution postulated by Theorem 3.3.1 is the only

solution.

Lemma 3.3.4 Suppose the conditions of Theorem 3.3.1 hold. Then,
N
∑

k=1

αk.2
xk =

N
∑

k=1

αk.2
bk and

N
∑

k=1

xk =
N
∑

k=1

bk = β1 + β2, imply {x1, . . . , xN} = {b1, . . . , bN}

Proof: Let us assume that there exists some k such that xk 6= bk otherwise we

are done.

Case I: x1 > b 1

There exists some k such that xk = bk − C2 for some positive constant C2 while

x1 = b1 + C1 (for some positive constant C1). Using Lemma(3.3.3) we have.
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α1.2
b1+C1−1 > αk.2

bk−C2 , since C1, C2 ≥ 1

α1.2
b1+C1 + αk.2

bk−C2 > α1.2
b1+C1−1 + αk.2

bk−C2+1

α1.2
x1 + αk.2

xk > α1.2
x1−1 + αk.2

xk+1

The last equation implies that an allocation of {x1−1, x2, . . . , xk+1, . . . , xN}

yields a smaller cost. This is a contradiction.

Case II: x1 < b 1

There exists some k such that xk = bk + C2 for some positive constant C2

while x1 = b1 −C1 (for some positive constant C1). Using Lemma(3.3.3) we have.

αk.2
bk+C2−1 > α1.2

b1−C1 , since C1, C2 ≥ 1

α1.2
b1−C1 + αk.2

bk+C2 > α1.2
b1−C1+1 + αk.2

bk+C2−1

α1.2
x1 + αk.2

xk > α1.2
x1+1 + αk.2

xk−1

The last equation implies that an allocation of {x1+1, x2, . . . , xk−1, . . . , xN}

yields a smaller cost. This, again, is a contradiction and therefore x1 = b1. We

now consider this scenario.

Case III: x1 = b1.

Now ∃ k such that xk = bk +C for some positive constant C. Using Lemma(3.3.3)

we have,

αk.2
bk+C > α1.2

b1 , since C ≥ 1

α1.2
b1 + αk.2

bk+C > α1.2
b1+1 + αk.2

bk+C−1

α1.2
x1 + αk.2

xk > α1.2
x1+1 + αk.2

xk−1

The last equation clearly implies that an allocation of {x1+1, x2, . . . , xk−1, . . . , xN}

yields a smaller cost. This is a contradiction. Therefore from Cases I, II and III
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we can conclude that xk = bk, ∀k

Lemma 3.3.1 proves that {x1, . . . , xN} = {b1, . . . , bN} is an optimal solution

for the allocation of β1+β2 bits. It can be seen that the solution space of Problem A

is a subset of the solution space of the constrained optimization problem presented

in Theorem 3.3.1 above. Lemma 3.3.4 shows that {x1, . . . , xN} = {b1, . . . , bN}

is the only optimal solution under the constraint
N
∑

k=1

xk = β1 + β2. The Lemma

uses the algorithm discussed for single user bit allocation problem discussed in the

preceding sections.

The solution space of Problem A is clearly a subset of the solution space of

constrained optimization problem described in Lemma 3.3.1. It has been shown

using Lemmas 3.3.1 and 3.3.4 that the only possible solution to the constrained

optimization problem described in Lemma 1 is {x1, x2, . . . , xN}={b1, b2, . . . , bN}.

Therefore it is obvious that Problem A would have a solution if and only if, ∃ δk,

such that
N
∑

k=1

δkbk = β1, where, δk = {0, 1}. It can therefore be concluded that

Problem B has a solution if and only if Problem A has a solution. Since any

instance of Problem B can be transformed to an instance of Q, Q is NP-hard.

3.4 Conclusion

We have considered optimal DMT under a multiuser setting, where multiple

users with different QoS requirements are supported by the same DMT system.

The QoS requirements are quantified by the SERs and bit rates required by each

user. We have considered the problem of optimal bit allocation and subchannel

allocation. We have shown that when there are only two users present, and both

have the same SER requirement, then the underlying optimization is NP-Hard.

Consequently, the more general problem is also NP-Hard.

A variant of this problem is worthy of future consideration. In the current in-
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stances we have been flexible about the number of subchannels each user is assigned.

Rather that implicitly comes out as a variable of optimization. The following al-

ternative formulation is worthy of consideration: That the number of subchannels,

each user receives is fixed a priori, though which subchannels, each user gets is still

a variable of optimization. We conjecture that this too is an NP-hard problem.
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CHAPTER 4

MULTI-AGENT CONTROL UNDER MEDIUM ACCESS

CONSTRAINTS

In this chapter we introduce the problem of multi-agent control. A brief

review of the previous work in this area is presented in section 4.1. We develop the

math and introduce the necessary notations and assumptions for the framework in

section 4.2. In section 4.3 we present a review of [30] which deals with the problem of

multi-agent control in the absence of medium access control constraints. A modified

control law which respects the medium access constraints is then presented in 4.4.

4.1 Background and motivation

The sequel extends the work done by Abel et al [30] that concerned the fault

tolerant, distributed, scalable control of a group of agents that must move in a

formation specified by relative positions between agents and a constant formation

velocity. The control law proposed in [30] naturally accommodates various levels

of fault tolerance and scalability and requires an amount of inter-agent communi-

cation that is commensurate with a designated level of fault tolerance. The control

law assumes, however, that this exchange of information occurs simultaneously. In

practice communications must occur under Medium Access Control (MAC) con-

straints. Thus no agent can transmit and receive at the same time, and cannot

transmit to another agent who is receiving information from yet another. We mod-

ify the control algorithm so that such MAC constraints are respected, and provide

a stability analysis of this modified control law.

Networks of mobile autonomous agents, [33]-[62], involve multiple mobile ob-

jects that cooperate to achieve any number of objectives. Thus they may achieve a

formation, avoid collisions and obstacles, and be robust to malicious and hostile en-

vironments. Cooperation between these agents is effected through limited exchange
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of information between the agents over wireless media with little or no centralized

intervention. We are concerned with agents modeled as double integrators in each

cartesian dimension that must organize themselves into formations prescribed by

the relative positions between the agents. As in [30] the goal is to devise control

laws that, require minimal information exchange between the agents and minimal

knowledge on the part of each agent of the overall formation objective, are fault

tolerant, scalable, and easily reconfigurable in the face of the loss or arrival of an

agent, and the loss of a communication link.

A major drawback of [30] is that it assumes that all agents can exchange infor-

mation at will. This is fine if agents acquire each others state information through

straightforward sensing. If however, state information is exchanged through broad-

cast communication, this assumption is highly unrealistic. In particular when

agents broadcast their state information they must compete with each other for

access to the communication medium and are constrained by Media Access Con-

trol (MAC) protocols. Specifically, if agent A must listen to the broadcast of agent

B, then no other agent that has A in its broadcast range can broadcast at that

instant. Further in many instances no agent can simultaneously transmit and re-

ceive. These requirements limit (often severely, [64]) the number of transmissions

that can occur at a given time, and the full schedule of information exchange can

only occur over several time slots. Consequently information available to a given

agent as it executes its control law may not be the most up to date. The principal

contribution of the work presented in this chapter is to modify [30] so that MAC

protocols are accommodated.

Significant work in this area has been conducted in the robotics community,

e.g. [38]-[44], and also in the string stability literature, [36], [52]. [37], force a

group of agents to collaboratively lie on a manifold, but require every agent to

communicate with all others. The biologically motivated flocking literature, [39]-
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[40], seeking to mimic flocks of bird, seeks to organize coherent group movement as

opposed to maintaining specified relative positions. To induce a set of agents with

same speed to move in the same direction [33] proposes a simple algorithm that is

rigorously analyzed in [34]. The rendezvous problem, where agents are induced to

converge to a single unspecified location, is studied in [48], [49]. Consensus forming

or synchronization are also instructive examples, [53], [60].

We are particularly interested in organizing agents into formations defined

by desired relative positions and trajectories, [50] -[51]. These papers contrast

with the rigid formations literature where the topology is specified by inter agent

distances rather than relative positions and velocities, [45]-[47] and requires a much

more extensive communication architecture. The closest approach is in [51] which

seeks to organize a network of agents according to specified relative positions, and

focuses on the communication topology. Further discussion on this paper and [30]

is below.

Papers like [50] and [51] separately propose a desired formation and a state

exchange architecture and ask whether the latter suffices to achieve a formation.

[30] reverse the question and ask given a desired formation, what state exchange

architecture suffices to achieve it. They also focus on control laws that incorpo-

rate redundancies that permit the formation to survive the loss of agents and/or

communication links.

Since the take off point of the work presented here is [30], we briefly reprise

its salient points. [30] recognizes that the same geometry can be described in

multiple ways. Thus if the desired geometry is that depicted in fig. 4.1 it can

be described by specifying the relative positions between agents joined by arrows.

Thus in this figure relative positions and/or relative velocities of the pairs (1, 2),

(1, 4), (2, 3) and (4, 5) are specified. One may also specify the same geometry by

adding redundant information, as in fig. 4.2, where the additional constraints are
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Figure 4.1: Agent formation topology with no redundancy
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Figure 4.2: Agent formation topology with redundancy

added between the pairs (1, 3) and (1, 5). Such a redundant structure adds fault

tolerance to the geometric description. Thus, while the loss of agent 4 in fig. 4.1,

implies that 5 is isolated, in fig. 4.2, 5 retains its position relative to agent 1 and

the new topology remains viable. Thus additional fault tolerance is achieved in fig.

4.2 by adding redundancies in the geometric configuration such that the loss of an

agent still results in an acceptable geometry.

Here on we will call this the Formation Topology, as opposed to the Commu-

nication Topology which defines the state information flow required to implement a

cooperative control law. We explore here the relation between these two topologies

and argue that issues of fault tolerance, scalability and communication derive from

the correct design of the formation topology.

To this end [30] proposes a cost function that incorporates the formation

topology. A one step ahead optimal control law obtained on its basis has many fea-

tures. Foremost among them is the fact that the communication topology required

to implement it is identical to the underlying formation topology.
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The key attractive properties of the approach of [30] are as follows: In the

sequel we will call a pair of agent neighbors if they appear in the same geometric

constraint. Thus in fig. 4.1 agent 1 has the neighbors 2, and 4, while in fig. 4.2 it

has the additional neighbors 3 and 5.

(a) Agent i needs the state information of only its neighbors in the formation

topology.

(b) A given agent only needs to know the constraints imposed on itself by the

formation topology. Thus in figure 4.1, agent 2 needs only to know its desired

position/velocity relative to 1 and 3. Should the formation topology explicitly

mandate that 2 move with a certain velocity, then of course 2 should be aware

of this.

(c) Should the loss of an agent still permit an acceptable topology, e.g. the loss

of 4 in fig. 4.2, then only the neighbors of the lost agent need to reconfigure

their control law.

(d) Should the loss of a communication channel still permit an acceptable topol-

ogy, e.g. the loss of the arc joining agents 1 and 5 in fig. 4.2, then only the

agent at the end points of the lost arc need to reconfigure their control law.

(e) If a new agent joins the fleet by establishing a geometric position with respect

to a subset of the agents, then only these agents need to reconfigure their

control law.

(f) Relative position constraints can be augmented by compatible, potentially

redundant velocity and/or relative velocity constraints. Thus one may impose

a velocity requirement on agent 5 in fig. 4.2, that would automatically specify

the direction and movement of the whole formation.
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Thus (a) indicates the communication topology highlighted in the foregoing.

Item (b) has the added attraction of permitting the control to be implemented by

a given agent with only a local knowledge of the formation topology. Scalability

comes from (e) as a new agent 6 in fig. 4.1 with only 5 as a neighbor would require

that only 5 readjust its control law. Reconfigurability under the loss of an agent is

greatly facilitated.

We propose an alternative control law that retains these attractive properties

while respecting MAC requirements. A few points of note are as follows: First

[30] have an undirected communication architecture, i.e. if agent i must convey its

state to j, then j must convey its state to i. Though over a period of time we also

have this requirement, as no agent can simultaneously transmit and receive, in any

given sampling interval the architecture here is directional. This contrasts though

from the directional control of [65], [66] where if agent i must sense the state of j,

then agent j will not know the sense of i at all. Second as will be evident in the

sequel, the control law employs a communication architecture that varies from one

sampling interval to the next. However, unlike [60] this architecture is periodically

varying. Of course [60] is confined to the synchronization problem, as opposed to

the harder formation control problem studied here.

4.2 Dynamics and Formation Topology

When considering the problem of an n-agent formation our focus here is on

a two dimensional formation topology, even though the ideas trivially extend to

three dimensional formations as well. We shall partition the global, 4n × 1 state

vector x of the network as

x = [xT
1 , x

T
2 ]

T , (4.2.1)
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where x1 and x2 contain the positions and velocities respectively. In particular,

denoting xl,j as the j-th element of xl, we will have

x1,i is the x position of agent i,

x2,i is the x velocity of agent i,

x1,n+i is the y position of agent i, and

x2,n+i is the y velocity of agent i

We shall further assume that each agent has been internally controlled to

represent a double integrator with elements ui and un+i of the control input vector

u representing normalized force variables acting on the i-th agent, in the x and y

directions respectively. For notational simplicity we will assume that the sampling

interval is 1-second. The ideas trivially extend to non unity sampling intervals.

Thus, to within a suitable force normalization the system of agents can be described

by:

x(k + 1) = Φx(k) + Γu(k) (4.2.2)

where

Φ =





I2n I2n

0 I2n



 , and Γ =





I2n

2I2n



 . (4.2.3)

To ease notation we will often denote

Φx[k] = θ(k). (4.2.4)

The formation topology is alternatively characterized graphically and alge-

braically. In the former case it is described by an undirected graph with agents

as nodes. An arc exists between two agents if their relative position constraint

explicitly appears in the description of the formation topology.
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Algebraically, the formation topology will be characterized in the following

way. Observe that the relative positions between two agents i and j can be com-

pletely specified, for suitable f and g by the pair of equations

x1,i − x1,j = f and x1,n+i − x1,n+j = g. (4.2.5)

Assume that there are L such pairs of constraints. Then with an L× n matrix A,

A =













A 0 0

0 A 0

0 0 02n×2n













and b =













b1

b2

02n×1













(4.2.6)

the topology can be represented by the following equation:

Ax = b, (4.2.7)

Here x is the target state vector. In all there are 2L position constraints and 2m

velocity constraints. Further A is a a matrix with each row having all but two

elements zero and the remaining two being ±1.

Thus in figure 4.1, L is 4 and in figure 4.2, it is 6. In (4.2.5), for example, f

and g are suitable elements of b1 and b2 respectively. Also in case of figure 4.1

A =



















1 −1 0 0 0

0 1 −1 0 0

1 0 0 −1 0

0 0 0 1 −1



















.

Formally, we make the following assumption.

Assumption 4.2.1 Suppose the formation topology has L arcs. Then the matrix

A is L× n. Further if an arc exists between agents i and j then there exists a row

of A which has all but the i-th and j-th elements zero and among the remaining
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two one is 1, and the other −1. Further b1, b2 are each in the range space of A, and

rank[A] = n− 1. (4.2.8)

Note that (4.2.8) implies that the graph representing the formation topology is

connected, i.e. there is a path joining any two nodes that can be traversed by

moving from one nearest neighbor to the next.

Recall that while figures 4.1 and 4.2 describe the same geometry the lat-

ter represents a formation topology with redundancies. Observe if the formation

topologies in figure 4.1 and figure 4.2 are respectively defined by the pairs [A(1), b(1)]

and [A(2), b(2)], then [A(1), b(1)] is a submatrix of [A(2), b(2)]. Moreover, should the

loss of an agent result in a topology that remains acceptable, e.g. the loss of 4 in

figure 4.2, then this new topology characterized by [A(3), b(3)] obtained by removing

the rows corresponding to the constraints featuring 4 and columns corresponding

to the states of 4, is itself a submatrix of [A(2), b(2)]. The loss of a communication

channel, e.g. that between 1 and 5 would involve the use of a new pair obtained

by removing rows characterizing the constraint defining this lost arc. This feature

forms a core property to be exploited in fault tolerant design. Scalability is likewise

incorporated rather easily. Thus if a new agent 6 appears in figure 4.2 with an arc

between it and 5, then the new pair [A(4), b(4)] characterizing it has [A(2), b(2)] as

a submatrix, and involves just the addition of rows and columns, and aumenting

rows in [A(2), b(2)] that feature in [A(4), b(4)] by zero column entries. In other words

with × denoting arbitrary submatrices, one has

[A(4), b(4)] =





A(2) 0 b(2)

× × ×



 . (4.2.9)

Thus the loss of an agent/communication channel requires working with a

submatrix of the original [A, b], and the addition of an agent requires a supermatrix
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of [A, b].

4.3 Control Law Without MAC Constraints

We first recount the control law of [30], that assumes that communication

occurs without access control constraints. It involves a one step ahead optimization

law using the cost function

J(k) = [Ax(k + 1)− b]T [Ax(k + 1)− b] +

+uT (k)Qu(k) (4.3.10)

Where Q = QT > 0 penalizes the input. The key step in achieving the control law

with the desired characteristics described in the introduction is to appropriately

select Q.

Since x(k+1) is dependent on u(k) we begin by substituting (4.2.2, 4.2.4) into

the cost function defined in (4.3.10). Taking the partial derivative of the resultant

expression with respect to u(k), we obtain:

[

ΓTATAΓ +Q
]

u(k) = ΓTAT [b−Aθ(k)]

Choose, for some α > 0,

Q = α− ΓTATAΓ > 0.

The resulting control law is:

u(k) = α−1ΓTAT b− α−1ΓTATAθ(k) (4.3.11)

It has been shown in [30] that stability is guaranteed if Q is positive definite.

Thus α must be chosen so that

αI − ΓTATAΓ > 0. (4.3.12)

Now we reprise the arguments from [30] that show that the communication
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topology resulting from (4.3.11) is identical to the geometric topology and further

that only a local knowledge of the formation is required by each agent. Observe

that the control inputs to agent i are u2i and u2i−1. We will show that if i and

j do not have an arc between them in the formation topology, then u2i and u2i−1

do not depend on θ2j−1, θ2j , θ2j−1+n and θn+2j . Because of the structure of Φ, this

in turn implies that u2i and u2i−1 do not depend on x2j−1, x2j , x2j−1+n and xn+2j,

establishing the structure of the communication topology. Furthermore observe

that agent i can select λi simply by knowing the number of constraints it is involved

in. As theorem 4.3.1 shows and is evident from (4.3.11) λi is only needed by agent

i to construct its input.

Then we have the following result that establishes the various properties of

the communication topology listed in the foregoing.

Theorem 4.3.1 Consider (4.3.11) under (4.2.1), (4.2.3), and (4.2.6). Then find-

ing u2i−1(k) and u2i(k) requires:

(A) The states of agent l only if there is an arc between agents l and i in the

formation topology.

(B) The l-th row of A only if for some j ∈ {2i− 1, 2i, 2i− 1 + n, 2i+ n} alj 6= 0.

(C) The l-th element of b(k) only if for some j ∈ {2i − 1, 2i, 2i − 1 + n, 2i + n}

alj 6= 0.

(D) The gain λi can be obtained by agent i simply by knowing how many neighbors

it has.

Proof: See [67] for a proof.

(A) shows that the communication topology is the same as the formation

topology. (B) and (C) show that agent i need only know those rows of A and

elements of b which define the arcs emanating from it. Thus i must only know
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its place in the formation topology and a distributed knowledge of the formation

topology suffices. This in particular has security implications as even if an agent is

compromised the global objective is not.

If despite the loss of an agent, e.g. 4 in figure 4.2, the formation topology

remains viable, then this modified formation topology is described by a [A, b] ma-

trix that is a submatrix of its counterpart in the original formation topology, and

obtained by removing the rows characterizing the two arcs impacting 4 and the four

columns of A corresponding to the states of 4. As the elements of these columns in

the rows of the original A matrix defining the arcs of 2 and 3 are zero, the inputs to

agents 2 and 3 are unchanged. These agents do not reconfigure their control laws

and need not know about the loss. Similarly if communication between 1 and 5 be

impaired or lost, then only 1 and 5 must know of this loss and adjust their control

law.

4.4 Control Law under Medium Access Con-

straints

The control law in 4.3 assumes that all agents can communicate at will. In

practice when broadcast communication is used MAC constraints must be used

to avoid message collisions. At the minimum this requires that when an agent is

receiving state information from a neighbor all others in whose broadcast range it

resides, must be silent. Nor can an agent receive and broadcast simultaneously.

Further, depending on the circumstance one of the following three situations

may hold.

(a) All agents are in each others mutual broadcast range.

(b) Only agents having an arc between them are in each other’s mutual broadcast

range.

(c) While any two agents that have an arc between them are in each other’s
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mutual broadcast range, other agents without an arc to them may be in their

broadcast range.

The control law we propose accommodates all these three settings. At any

rate the following assumption will hold.

Assumption 4.4.1 If an arc exists between i and j in the formation topology, then

i and j are in each others broadcast range. Further each agent always knows its

position and velocity.

As is customary in ad hoc networks, [63] we assume a priori that the agents

have settle on a broadcast schedule, that is consistent with the MAC constraints

noted above. We note that efficient algorithms for determining such a schedule,

that involve only local exchange of information are available in the literature.

This schedule must be implemented over K sampling intervals, in each of

which certain agents broadcast in a manner consistent with MAC requirements.

Each interval is assumed for simplicity to be one.

This transmission pattern is repeated after every K-samples. We further

assume that while every input is updated in every sampling interval, the agent

effecting that update does so by modifying (4.3.11), by replacing the instantaneous

state information by the latest value it has access to.

Finally, as any two agent that have an arc between them are in each oth-

ers broadcast range, for broadcast efficiency the following assumption, that also

formalizes the other MAC constraints, will apply.

Assumption 4.4.2 Every agent broadcasts only once in every K sampling inter-

vals, and when it transmits, all agents it has an arc with receive that information.

Further no agent can receive while it is broadcasting, and an agent cannot broadcast

if an agent it has an arc to is receiving from another source. Moreover, all commu-

nication is instantaneous, in that if a broadcast occurs over an interval [a, b), then
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the recepient knows the information at time a.
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Figure 4.3: Desired formation for a three agent system.

As an example consider the setting of (4.3). Suppose the transmission sched-

ule uses K = 3, and is as follows: 1 broadcasts to 2 and 3 at all instants 3k, 2

transmits to 1 at 3k+1, and 3 to 1 at 3k+2. Note that this accords with assump-

tions, 4.4.1 and 4.4.2, regardless of whether 2 and 3 are in each others broadcast

range.

Define

Di = eie
′
i (4.4.13)

where ei is a n × 1 vector that has 1 in its i-th element, and zeros in all others.

Also denote:

Dij = Ij ⊗Di. (4.4.14)
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Then the control law becomes:

u(3k) =
Γ′

α
A′b−

{

(D22 +D32)
Γ′

α
A′AΦD14

+
3
∑

i=1

Di2
Γ′

α
A′AΦDi4

}

x(3k)

− D12
Γ′

α
A′AΦD34x(3k − 1)

− D12
Γ′

α
A′AΦD24x(3k − 2)

u(3k + 1) =
Γ′

α
A′b−

{

D12
Γ′

α
A′AΦD24

+
3
∑

i=1

Di2
Γ′

α
A′AΦDi4

}

x(3k + 1)

− (D22 +D32)
Γ′

α
A′AΦD14x(3k)

− D12
Γ′

α
A′AΦD34x(3k − 1)

u(3k + 2) =
Γ′

α
A′b−

{

D12
Γ′

α
A′AΦD34

+
3
∑

i=1

Di2
Γ′

α
A′AΦDi4

}

x(3k + 2)

− D12
Γ′

α
A′AΦD24x(3k + 1)

− (D22 +D32)
Γ′

α
A′AΦD14x(3k).

The term involving

3
∑

i=1

Di2
Γ′

α
A′AΦDi4

recognizes that each agent always has its state information.

To make these ideas more concrete Suppose

V = {1, 2, · · · , n}.

Define Vi ⊂ V as the set of all agents that have an arc to agent i in the formation
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topology. Then the schedule comprises a sequence of sets

V (l) ⊂ V, ∀l ∈ {0, 1, · · · , K − 1},

where each agent in V (l) broadcasts in every sampling interval starting with kK+l.

In keeping with assumption 4.4.2 we obtain the following control law, which we note

retains the attractive properties of (4.3.11): For all integer k, and l ∈ {0, 1, · · · , K−

1}

u(kK + l) =
Γ′

α
A′b−

(

n
∑

i=1

Di2
Γ′

α
A′AΦDi4

)

x(kK + l)

−
l
∑

m=0





∑

i∈V (m)

∑

j∈Vi

Dj2
Γ′

α
A′AΦDi4



 x(kK +m)

−
K−1
∑

m=l+1





∑

i∈V (m)

∑

j∈Vi

Dj2
Γ′

α
A′AΦDi4





x(k(K − 1) +m) (4.4.15)

In (4.4.15) the second term captures the fact that all agents have access to their

own states at all times. The resulting closed loop system is of course K-periodic.

To formalize the underlying rules governing the MAC protocol, that directly

impact the stability proof, we make the following assumptions.

Assumption 4.4.3 The V (l) form a disjoint partition of V , i.e.

V (i) ∩ V (j) = {φ}

and

∪K−1
i=0 V (i) = V.

This assumption ensures that in every K-cycle each node broadcasts only once,

and is consistent with assumption 4.4.2.

Assumption 4.4.4 If for some l ∈ {0, 1, · · · , K − 1}, i ∈ V (l) then for all j ∈
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V (l), i /∈ Vj.

Since every neighbor of i ∈ V (l) in the formation topology is in receive mode in the

pertinent interval, this ensures that no agent receives and transmits simultaneously.

Assumption 4.4.5 If for some l ∈ {0, 1, · · · , K − 1}, {i, j} ⊂ V (l). Then V (i) ∩

V (j) = {φ}.

This assumption ensures that no node can receive simultaneously from multiple

sources. This is necessitated by the fact that no node can broadcast if a node in

its broadcast range is receiving from another node.

4.4.1 Simulation Results

The initial conditions of the fleet are the same for all the simulations. Figure

(4.1) illustrates the desired formation topology without any built-in redundancy.

The communication protocol for such a configuration is as follows,

• (kT, kT + h): 1 → 2, 1 → 4

• (kT + h, kT + 2h): 2 → 1, 2 → 3, 5 → 4

• (kT + 2h, kT + 3h): 4 → 1, 4 → 5, 3 → 2

where, T = 3h and the direction of the arrow indicates the direction of the infor-

mation flow. This assumes that none of the pairs (2,4), (5,1) and (3,5) are in each

others broadcast range.

Now consider the topology with redundancy built-in. Figure 4.4 illustrates

the desired formation topology with redundancy incorporated via the link between

agents 2 and 4. The communication protocol for this configuration is shown below

• (kT, kT + h): 1 → 2, 1 → 4

• (kT + h, kT + 2h): 2 → 1, 2 → 3, 2 → 4
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• (kT + 2h, kT + 3h): 4 → 1, 4 → 5, 4 → 2

• (kT + 3h, kT + 4h): 3 → 2, 5 → 4

where T = 4h. This does assume that (2,4) are now in each others broadcast

range. Effectively, in going from figure 4.4 to 4.1 the agents have reduced their

broadcast range. This is a device that is commonly employed to ensure a more

efficient implementation of the broadcast schedule.

The starting points of the fleet are denoted by ‘x’, the positions at each time step

‘T ’ are denoted by ‘.’. The final positions of the agents are denoted by ’o’. All

the simulations were run until the desired formation was reached. Figures 4.5,4.6

show the trajectories of the individual agents in the fleet for the formations in

figures 4.1,4.4 respectively. Figures 4.7,4.8 illustrate the position errors ‖Ax− b‖

of the fleet for the formations shown in figures 4.1,4.4 respectively. Notice that a

redundant formation topology has the added advantage of faster convergence, even

without the loss of an agent, i.e. it is more robust from a performance point of

view as well.

4.5 Conclusion

We have extended the work of Abel et. al. by imposing a Medium Access

Control constraint on formation control. The MAC constraints prohibits simultane-

ous broadcast by multiple agents that neighbor an agent that is currently receiving.

1HH

ww

VV

''2HH

ww

ff 88 4VV

''3 5

Figure 4.4: Desired formation for a five agent system with redundancy.
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Figure 4.5: Trajectories of the individual agents without redundancy.



www.manaraa.com

68

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.6: Trajectories of the individual agents with redundancy.
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Figure 4.7: The formation error in the case of a non-redundant topology.
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Figure 4.8: The formation error in the case of a redundant topology.
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Our algorithm involves a periodic schedule. It is more stringent than is needed in

that it permits only one agent to broadcast at a time. Extension to a more relaxed

setting is straightforward, but becomes notationally complicated. The next chapter

conducts a stability analysis.
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CHAPTER 5

STABILITY ANALYSIS WITH MAC CONSTRAINTS

In Chapter 4 we examined the cooperative control of a fleet of autonomous

agents. The goal was to devise a control law that would enable the agents to attain

a specified formation, specified entirely by the relative position between a subset

of agents, while simultaneously adhering to the MAC constraints. In this chapter,

we present a proof for the stability of the control law in 5.2. It is noteworthy, that

this analysis is quite nontrivial and novel. The MAC constraints can be viewed as

engendering a setting with time varying, albeit periodic, links. As only one agent

broadcasts at a given time, one can view only its links being active at that time.

Such a setting of time varying links has been considered before in the literature, but

only under single integrator dynamics. The double integrator dynamics manifest

in our setting lack prior definitive analysis.

5.1 Preliminaries

In the sequel we adopt the notation that the direct sum between two matrices

H1 and H2 is given by:

H = H1 ⊕H2

=





H1 0

0 H2



 .

The following fact is self-evident.

Lemma 5.1.1 Consider invertible ni × ni matrices Pi, and Qi,

P = ⊕K
i=1Pi

and

Q = ⊕K
i=1Qi.
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Then the set of eigenvalues of P−1Q are the union of the sets of eigenvalues of

P−1
i Qi.

The next fact concerns observability issues.

Lemma 5.1.2 Consider an n × n A and p × n, C. Then an eigenvalue of A is

unobservable through C iff

C(zI − A)−1

does not have this eigenvalue as a pole.

Further the following obtains:

Lemma 5.1.3 Consider ni × ni Ai and pi × ni, Ci. Then some eigenvalues of Ai

are unobservable through Ci iff

[

⊕K
i=1Ci

] (

zI −⊕K
i=1A

)−1

does not have these eigenvalues as a poles.

Finally, we note the following result.

Lemma 5.1.4 Consider n× n matrices A and B, with A invertible. Then the set

of eigenvalues of A−1B are identical to those of A−⊤B⊤.

Proof: Observe λ is an eigenvalue of A−1B iff

det(λA− B) = 0.

Thus, there holds:

det(λA⊤ − B⊤) = 0.

Consequently the result follows.
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5.2 Stability Analysis

We first examine the approach for proving the stability of the closed loop

system defined by (4.2.2) and (4.4.15). Define first for m ∈ {0, · · · , K − 1}

Gm = −Γ
∑

i∈V (m)

∑

j∈Vi

Dj2
Γ′

α
(A′A⊕ A′A⊕ 0)(Di2 ⊕ 0)Φ, (5.2.1)

and

G = −Γ
n
∑

i=1

Di2
Γ′

α
(A′A⊕ A′A⊕ 0)(Di2 ⊕ 0)Φ. (5.2.2)

Then because of (4.2.6) and (4.2.3), the closed loop becomes: for l ∈ {0, · · · ,M−1},

x(kK + l + 1) = (Φ + G)x(kK + l) +
l
∑

m=0

Gmx(kK +m)

+
K−1
∑

m=l+1

Gmx(k(K − 1) +m) + Γ
Γ′

α
A′b.

Then it follows that


















x(kK +K + 1)

x(kK +K)

...

x(kK + 1)



















= F



















x(kK)

x(kK − 1)

...

x(kK −K + 1)



















+ Ĝ (5.2.3)

where with F1 given by


















I −(Φ + G + GK−1) −GK−2 · · · · · · −G1

0 I −(Φ + G + GK−2) −GK−1 · · · −G1

...
...

...
...

...
...

0 0 0 0 0 I



















(5.2.4)
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and F2 given by


















G0 0 · · · · · · · · · 0

G0 GK−1 0 · · · 0

...
...

...
...

...
...

(Φ + G + G0) GK−1 GK−2 GK−3 · · · G1



















(5.2.5)

F = F−1
1 F2 (5.2.6)

and

Ĝ = F−1
1



















I

I

...

I



















Γ
Γ′

α
A′b.

We first examine the eigenvalues of F . To this end we provide a result that

relates its eigenvalues to a lower dimensional matrix. Specifically define:

Gm = −
∑

i∈V (m)

∑

j∈Vi

Dj
A′A

α
Di, (5.2.7)

G = −
n
∑

i=1

Di
A′A

α
Di, (5.2.8)

F1 given by


















I −(I +G+GK−1) −GK−2 · · · · · · −G1

0 I −(I +G+GK−2) −GK−1 · · · −G1

...
...

...
...

...
...

0 0 0 0 0 I



















, (5.2.9)
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F2 =



















G0 0 · · · · · · · · · 0

G0 GK−1 0 · · · 0

...
...

...
...

...
...

(I +G+G0) GK−1 GK−2 GK−3 · · · G1



















(5.2.10)

and

F = F−1
1 F2 (5.2.11)

In view of Lemma 5.1.1, (5.2.1)-(2.1.2) and (5.2.8)-(5.2.10) one obtains:

Lemma 5.2.1 Suppose (4.3.12) and assumptions 4.2.1-4.4.5 hold. Suppose that

some eigenvalues of F in (5.2.11) are at 1, and the rest are inside the unit circle.

Then the eigenvalues of F in (5.2.6) are also either 1, or inside the unit circle.

Similarly, the reduced dimensional matrix F has the following property.

Lemma 5.2.2 Suppose (4.3.12) and assumptions 4.2.1-4.4.5 hold. Then (K−1)n

eigenvalues of F in (5.2.11) are at 0, one eigenvalue is at 1, and the remaining

n− 1 are inside the unit circle.

Lemmas 5.2.1 and 5.2.2 together show that the eigenvalues of F are either

inside the unit circle or at 1. Our eventual goal is to show that

lim
k→∞

Ax(k) = b. (5.2.12)

Observe that this is equivalent to the requirement that

lim
k→∞

(IK ⊗A)



















x(kK)

x(kK − 1)

...

x(kK −K + 1)



















=



















I

I

...

I



















b. (5.2.13)

We next have the following result that assumes that all eigenvalues of F are

either at 1 or inside the unit circle.
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Lemma 5.2.3 Suppose all eigenvalues of F are either at 1 or are inside the unit

circle. Then all poles of

(IK ⊗A) (zI −F)−1

are inside the unit circle.

Proof: From Lemma 5.2.1 the only eigenvalues of F not inside the unit circle are

at 1. Then using Lemma 5.2.2, and a a Kalman like decomposition used in [67] to

show that all eigenvalues of F at 1 are unobservable through IK ⊗ A. Then the

result follows from Lemma 5.1.3.

Then we have the following main result.

Theorem 5.2.1 Suppose (4.3.12), assumptions 4.2.1, and 4.4.3-4.4.5 hold. Then

under (4.2.2) and (4.4.15), one has

lim
k→∞

Ax(k) = b.

Proof: Because of Lemma 5.2.3 the proof uses the final value theorem. Specifi-

cally, it shows that

lim
z→1

(1− z−1) A



















(zI −F)−1





































x(0)

x(−1)

...

x(−K + 1)



















+
G

1− z−1



















− b

1− z−1

)

= lim
z→1

A(zI −F)−1G − b

= 0.
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Thus it suffices to show that F has all eigenvalues either at 1 or inside the

unit circle. The sequel establishes this fact. From Lemma 5.1.4 it suffices to show

that all eigenvalues of F−⊤
1 F⊤

2 either at 1 or inside the unit circle. Suppose λ is

such an eigenvalue. Then there holds, for suitable vectors zi,


















G′
0 0 · · · · · · · · · 0

G′
0 G′

K−1 0 · · · 0

...
...

...
...

...
...

(I +G+G0)
′ G′

K−1 G′
K−2 G′

K−3 · · · G′
1





































z1

z2
...

zK



















= λ



















I −(I +G+GK−1)
′ −G′

K−2 · · · · · · −G′
1

0 I −(I +G+GK−2)
′ −G′

K−1 · · · −G′
1

...
...

...
...

...
...

0 0 0 0 0 I





































z1

z2
...

zK



















(5.2.14)

Denoting (I +G) = D we have,



















(G⊤
0 − λI) λ(G⊤

K−1 +D) · · · λG⊤
2 λG⊤

1

G⊤
0 (G⊤

K−1 − λI) · · · λG⊤
2 λG⊤

1

...
...

...
. . .

...

(G⊤
0 +D) G⊤

K−1 · · · G⊤
2 (G⊤

1 − λI)





































z1

z2
...

zK



















= 0 (5.2.15)

Lemma 5.2.4 The sums of the rows of the matrix G +
K−1
∑

i=0

Gi = A′A
α

are each

identically equal to zero.

Proof: The result follows directly from the properties of the incidence matrix A.

We need one last preparatory result.

Corollary 5.2.1 From Lemma (5.2.4), equations (5.2.7) and (5.2.8):

1. [G]ii < 0 ∀i
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2. [Gm]ij > 0 ∀i, j

These together with Lemma (5.2.4) we have,

3. The sums of the rows of the matrix
K−1
∑

i=0

|Gi| − |G| = A′A
α

are each identically

equal to zero.

We will now prove the fact that all eigenvalues of the matrix F−1
1 F2 are all

either at 1 or inside the unit circle.

Lemma 5.2.5 The eigenvalues of the matrix F−1
1 F2 are all either at 1 or inside

the unit circle.

Proof:

From Gershgorin’s theorem it suffices to show that the coefficient matrix

in equation (5.2.15) is diagonally dominant for |λ| ≥ 1. Observe that the main

diagonal for Gi ∀i ∈ {0, · · · , K − 1} is identically zero. Therefore observe that the

diagonal entries in the coefficient matrix in equation (5.2.15) given by the main

diagonal of Gi − λI are all identically −λ. Now consider the first n rows of the

coefficient matrix in equation (5.2.15)

[

(G0 − λI), λ(GK−1 +D), · · · , λG2, λG1

]

(5.2.16)

It suffices, therefore, to show that sum of the absolute values of elements in each

row of the following matrix

[

G0, λ(GK−1 + I +G), · · · , λG2, λG1

]

(5.2.17)

are each greater than |λ| (the absolute value of diagonal entries in the first n rows)

for |λ| > 1. Absolute value of equation (5.2.17) can be written as follows:
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[

|G0| , |λ| |(GK−1 + I +G)| , · · · , |λ| |G2| , |λ| |G1|
]

(5.2.18)

From equation (5.2.8), it can be noted that G is a diagonal matrix with [G]ii =

-
[A′A]ii

α
. From the properties of the incidence matrix, the i-th diagonal entry of A′A

is equal to the degree of the i-th node in the graph. Choosing α to be greater than

the highest degree of all the nodes in the graph, i.e,

α > max
i

{[A′A]ii} (5.2.19)

equation (5.2.18) can be re-written as follows:

[

|G0| , |λ| |GK−1|+ |λ| |I +G| , · · · , |λ| |G2| , |λ| |G1|
]

. (5.2.20)

Define |A| to be the matrix obtained by applying the absolute value to the

matrix A on an element by element basis. Due to the fact that all the diagonal

entries in G are negative and |[G]ii| < 1 (under 5.2.19), we have

|I +G| = I +G (5.2.21)

= I − |G|

Using (5.2.22) to re-write (5.2.20) we have,

[

|G0| , |λ| |GK−1|+ |λ| (I − |G|), · · · , |λ| |G2| , |λ| |G1|
]

. (5.2.22)

Adding all matrices in (5.2.22) we have,

|λ| (I − |G|) + |λ|
(

K−1
∑

i=1

|Gi|
)

+ |G0|
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Adding and subtracting (|λ| − 1) |G0| from the above equation,

|λ| (I − |G|) + |λ|
(

K−1
∑

i=0

|Gi|
)

− (|λ| − 1) |G0| (5.2.23)

= |λ| I − (|λ| − 1) |G0|+ |λ|
{(

K−1
∑

i=0

|Gi|
)

− |G|
}

Using Lemma (5.2.4) and Corollary (5.2.1) the sum of the rows in the above equa-

tion simplifies to the sum of the rows of the following matrix,

|λ| I − (|λ| − 1) |G0| (5.2.24)

Clearly the sums of the rows of the matrix in (5.2.24) are each less than |λ| for

|λ| > 1. Similarly, the sum of the absolute values of the non-diagonal elements of

rows jn+ 1 : j(n+ 1) is equal to the sum of the rows of the following matrix,

|λ| I − (|λ| − 1)

(

|G0|+
j
∑

i=1

|GK−j|
)

Once again the sums of the rows of the matrix above are each less than |λ| for |λ| >

1. Therefore, the coefficient matrix in equation (5.2.15) is diagonally dominant for

|λ| ≥ 1.

This result together with 5.2.3 proves the stability of the control law presented

in section 4.4. In this chapter we presented the stability analysis of the control law

proposed in chapter 4. This modified control law, presented in section 4.4, respects

the medium access constraints.
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CHAPTER 6

CONCLUSIONS

In this thesis we considered the resource allocation problems pertaining to Subband

Coding Systems, DMT/OFDM based communication systems and Multi-Agent

control with medium access constraints.

In Chapter 2 we considered the problem of bit allocation to the quantizers

in a subband coding systems that minimizes the average distortion incurred by

the system. An algorithm that solves the problem of integer bit loading optimally

was presented in section 2.4. The computational complexity of the algorithm was

shown to be independent of the bit budget (B).

The problem of Optimum bit loading in DMT/OFDM based communication

systems (single user, multicarrier case) was introduced in chapter 2. The goal was

to minimize the total transmitted power subject to the user QoS constraints. This

minimization was considered through optimum allocation of bits to each subchannel

in the communication system. It is observed that the algorithm presented for

optimal bit allocation in subband coding systems can be adapted easily to solve

the single user multicarrier scenario. The computational complexity, once again, is

seen to be independent of the target bit rate (B).

We presented the problem of Optimum bit loading in DMT/OFDM based

communication systems (multiuser, multicarrier case) in chapter 3. We then ex-

amined the problem of bit allocation in multiuser multicarrier systems. In partic-

ular we examined bit loading within the context of multiuser communications, i.e.

when multiple services with different data rate and QoS requirements must share

the same multicarrier communications system. In this case the goal is not just to

distribute the bit rates across the carriers, but also to assign specific carriers to

different services. Several papers e.g. [22] have stated without proof or reference to
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the fact that this problem is NP-hard as a motivation for considering suboptimal

solutions. Consequently, if for no other reason than the sake of completeness, we

presented a proof for NP-hardness of the integer bit loading problem for a Multiuser

multicarrier system.

Multi-Agent Control under Medium Access Constraints was where we exam-

ined the cooperative control of a fleet of autonomous units that have to achieve

arbitrary relative positions. We proposed a new control strategy that results in

distributed control, requiring a communication topology that mirrors exactly the

formation topology and respects MAC requirements. A detailed stability analysis

of this control law was presented in 5.

Several areas of future work remain open. A variant of the multiuser DMT

problem is worthy of future consideration. In the current instances we have been

flexible about the number of subchannels each user is assigned. Rather that implic-

itly comes out as a variable of optimization. The following alternative formulation

is worthy of consideration: That the number of subchannels, each user receives is

fixed a priori, though which subchannels, each user gets is still a variable of opti-

mization. We conjecture that this too is an NP-hard problem. Further, efficient

suboptimal algorithms are desirable.

In the mutliagent control problem, we would like to study non-periodic access

protocols. Additionally, derivation of stability margins, and performance in the face

of temporary link losses need to be studied.
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